1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
use std::collections::{BTreeSet, HashMap};
use super::subregister_substitution::replace_input_subregister;
use super::{Expression, ExpressionType, RegisterProperties, Variable};
use crate::intermediate_representation::Arg as IrArg;
use crate::intermediate_representation::Blk as IrBlk;
use crate::intermediate_representation::ByteSize;
use crate::intermediate_representation::CallingConvention as IrCallingConvention;
use crate::intermediate_representation::DatatypeProperties;
use crate::intermediate_representation::Def as IrDef;
use crate::intermediate_representation::Expression as IrExpression;
use crate::intermediate_representation::ExternSymbol as IrExternSymbol;
use crate::intermediate_representation::Jmp as IrJmp;
use crate::intermediate_representation::Program as IrProgram;
use crate::intermediate_representation::Project as IrProject;
use crate::intermediate_representation::RuntimeMemoryImage;
use crate::intermediate_representation::Sub as IrSub;
use crate::intermediate_representation::Variable as IrVariable;
use crate::prelude::*;
use crate::utils::log::LogMessage;
// TODO: Handle the case where an indirect tail call is represented by CALLIND plus RETURN
// TODO: Since we do not support BAP anymore, this module should be refactored
// to remove BAP-specific artifacts like the jump label type.
/// A call instruction.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Call {
/// The target label. May be `None` for `CALLOTHER` instructions.
pub target: Option<Label>,
/// The return label if the call is expected to return.
#[serde(rename = "return")]
pub return_: Option<Label>,
/// A description of the instruction for `CALLOTHER` instructions.
pub call_string: Option<String>,
}
/// A jump instruction.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Jmp {
/// The mnemonic of the jump.
pub mnemonic: JmpType,
/// The target label for intraprocedural jumps.
pub goto: Option<Label>,
/// The call struct for interprocedural jumps.
pub call: Option<Call>,
/// If the jump is a conditional jump,
/// the varnode that has to evaluate to `true` for the jump to be taken.
pub condition: Option<Variable>,
/// A list of potential jump targets for indirect jumps.
pub target_hints: Option<Vec<String>>,
}
/// A jump type mnemonic.
#[allow(missing_docs)]
#[allow(clippy::upper_case_acronyms)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum JmpType {
BRANCH,
CBRANCH,
BRANCHIND,
CALL,
CALLIND,
CALLOTHER,
RETURN,
}
impl From<Jmp> for IrJmp {
/// Convert a P-Code jump to the internally used IR.
fn from(jmp: Jmp) -> IrJmp {
use JmpType::*;
let unwrap_label_direct = |label| {
if let Label::Direct(tid) = label {
tid
} else {
panic!()
}
};
let unwrap_label_indirect = |label| {
if let Label::Indirect(expr) = label {
expr
} else {
panic!()
}
};
match jmp.mnemonic {
BRANCH => IrJmp::Branch(unwrap_label_direct(jmp.goto.unwrap())),
CBRANCH => IrJmp::CBranch {
target: unwrap_label_direct(jmp.goto.unwrap()),
condition: jmp.condition.unwrap().into(),
},
BRANCHIND => {
let target = unwrap_label_indirect(jmp.goto.unwrap());
IrJmp::BranchInd(target.into())
}
CALL => {
let call = jmp.call.unwrap();
IrJmp::Call {
target: unwrap_label_direct(call.target.unwrap()),
return_: call.return_.map(unwrap_label_direct),
}
}
CALLIND => {
let call = jmp.call.unwrap();
IrJmp::CallInd {
target: unwrap_label_indirect(call.target.unwrap()).into(),
return_: call.return_.map(unwrap_label_direct),
}
}
CALLOTHER => {
let call = jmp.call.unwrap();
IrJmp::CallOther {
description: call.call_string.unwrap(),
return_: call.return_.map(unwrap_label_direct),
}
}
RETURN => IrJmp::Return(unwrap_label_indirect(jmp.goto.unwrap()).into()),
}
}
}
/// A jump label for distinguishing between direct and indirect jumps.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Label {
/// The term identifier of the target of a direct jump.
Direct(Tid),
/// The varnode holding the target address of an indirect jump.
Indirect(Variable),
}
/// An assignment instruction, assigning the result of an expression to a varnode.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Def {
/// The target varnode whose value gets overwritten.
pub lhs: Option<Variable>,
/// The expression that determines the value to be written.
pub rhs: Expression,
}
impl Def {
/// Convert a P-Code instruction to the internally used IR.
pub fn into_ir_def(self, generic_pointer_size: ByteSize) -> IrDef {
use super::ExpressionType::*;
match self.rhs.mnemonic {
LOAD => {
return IrDef::Load {
var: self.lhs.unwrap().into(),
address: self.rhs.input1.unwrap().into(),
}
}
STORE => {
return IrDef::Store {
address: self.rhs.input1.unwrap().into(),
value: self.rhs.input2.unwrap().into(),
}
}
_ => (),
}
let target_var = self.lhs.unwrap();
let value = match self.rhs.mnemonic {
LOAD | STORE => unreachable!(),
SUBPIECE => IrExpression::Subpiece {
low_byte: self.rhs.input1.unwrap().parse_to_bytesize(),
size: target_var.size,
arg: Box::new(self.rhs.input0.unwrap().into()),
},
INT_ZEXT | INT_SEXT | INT2FLOAT | FLOAT2FLOAT | TRUNC | POPCOUNT | LZCOUNT => {
IrExpression::Cast {
op: self.rhs.mnemonic.into(),
size: target_var.size,
arg: Box::new(self.rhs.input0.unwrap().into()),
}
}
_ => self.rhs.into(),
};
if target_var.address.is_some() {
IrDef::Store {
address: IrExpression::Const(
target_var.parse_address_to_bitvector(generic_pointer_size),
),
value,
}
} else {
IrDef::Assign {
var: target_var.into(),
value,
}
}
}
}
/// A basic block.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Blk {
/// The `Def` instructions of the block in chronological order.
pub defs: Vec<Term<Def>>,
/// The jump instructions at the end of the basic block.
pub jmps: Vec<Term<Jmp>>,
}
impl Blk {
/// Convert a P-Code block to the internally used IR.
pub fn into_ir_blk(self, generic_pointer_size: ByteSize) -> IrBlk {
let defs: Vec<Term<IrDef>> = self
.defs
.into_iter()
.map(|def_term| Term {
tid: def_term.tid,
term: def_term.term.into_ir_def(generic_pointer_size),
})
.collect();
let indirect_jmp_targets = self
.jmps
.iter()
.find_map(|jmp_term| jmp_term.term.target_hints.clone())
.unwrap_or_default();
let jmps: Vec<Term<IrJmp>> = self
.jmps
.into_iter()
.map(|jmp_term| Term {
tid: jmp_term.tid,
term: jmp_term.term.into(),
})
.collect();
let indirect_jmp_targets = indirect_jmp_targets
.into_iter()
.map(|address| Tid::blk_id_at_address(&address))
.collect();
IrBlk {
defs,
jmps,
indirect_jmp_targets,
}
}
}
impl Blk {
/// Add `LOAD` instructions for implicit memory accesses
/// to convert them to explicit memory accesses.
fn add_load_defs_for_implicit_ram_access(&mut self, generic_pointer_size: ByteSize) {
let mut refactored_defs = Vec::new();
for def in self.defs.iter() {
let mut cleaned_def = def.clone();
if let Some(input) = &def.term.rhs.input0 {
if input.address.is_some() {
let load_def = input.to_load_def("$load_temp0", generic_pointer_size);
cleaned_def.term.rhs.input0.clone_from(&load_def.lhs);
refactored_defs.push(Term {
tid: def.tid.clone().with_id_suffix("_load0"),
term: load_def,
});
}
}
if let Some(input) = &def.term.rhs.input1 {
if input.address.is_some() {
let load_def = input.to_load_def("$load_temp1", generic_pointer_size);
cleaned_def.term.rhs.input1.clone_from(&load_def.lhs);
refactored_defs.push(Term {
tid: def.tid.clone().with_id_suffix("_load1"),
term: load_def,
});
}
}
if let Some(input) = &def.term.rhs.input2 {
if input.address.is_some() {
let load_def = input.to_load_def("$load_temp2", generic_pointer_size);
cleaned_def.term.rhs.input2.clone_from(&load_def.lhs);
refactored_defs.push(Term {
tid: def.tid.clone().with_id_suffix("_load2"),
term: load_def,
});
}
}
refactored_defs.push(cleaned_def);
}
for (index, jmp) in self.jmps.iter_mut().enumerate() {
match jmp.term.mnemonic {
JmpType::BRANCHIND | JmpType::CALLIND => {
let input = match jmp.term.mnemonic {
JmpType::BRANCHIND => match jmp.term.goto.as_mut().unwrap() {
Label::Indirect(expr) => expr,
Label::Direct(_) => panic!(),
},
JmpType::CALLIND => {
match jmp.term.call.as_mut().unwrap().target.as_mut().unwrap() {
Label::Indirect(expr) => expr,
Label::Direct(_) => panic!(),
}
}
_ => panic!(),
};
if input.address.is_some() {
let temp_register_name = format!("$load_temp{index}");
let load_def = input.to_load_def(temp_register_name, generic_pointer_size);
*input = load_def.lhs.clone().unwrap();
refactored_defs.push(Term {
tid: jmp.tid.clone().with_id_suffix("_load"),
term: load_def,
});
}
}
_ => (),
}
}
self.defs = refactored_defs;
}
}
/// An argument (parameter or return value) of an extern symbol.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Arg {
/// The register containing the argument if it is passed in a register.
pub var: Option<Variable>,
/// The expression computing the location of the argument if it is passed on the stack.
pub location: Option<Expression>,
/// The intent (input or output) of the argument.
pub intent: ArgIntent,
}
/// The intent (input or output) of a function argument.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub enum ArgIntent {
/// The argument is an input parameter.
INPUT,
/// The argument is a return value.
OUTPUT,
}
/// A subfunction.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Sub {
/// The name of the function.
pub name: String,
/// The basic blocks of the function.
///
/// Note that the first block of the array may *not* be the function entry point!
pub blocks: Vec<Term<Blk>>,
/// The calling convention used (as reported by Ghidra, i.e. this may not be correct).
pub calling_convention: Option<String>,
}
impl Term<Sub> {
/// Convert a `Sub` term in the P-Code representation to a `Sub` term in the intermediate representation.
/// The conversion also repairs the order of the basic blocks in the `blocks` array of the `Sub`
/// in the sense that the first block of the array is required to also be the function entry point
/// after the conversion.
pub fn into_ir_sub_term(mut self, generic_pointer_size: ByteSize) -> Term<IrSub> {
// Since the intermediate representation expects that the first block of a function is its entry point,
// we have to make sure that this actually holds.
if !self.term.blocks.is_empty() && self.tid.address != self.term.blocks[0].tid.address {
let mut start_block_index = None;
for (i, block) in self.term.blocks.iter().enumerate() {
if block.tid.address == self.tid.address {
start_block_index = Some(i);
break;
}
}
if let Some(start_block_index) = start_block_index {
self.term.blocks.swap(0, start_block_index);
} else {
panic!("Non-empty function without correct starting block encountered. Name: {}, TID: {}", self.term.name, self.tid);
}
}
let blocks = self
.term
.blocks
.into_iter()
.map(|block_term| Term {
tid: block_term.tid,
term: block_term.term.into_ir_blk(generic_pointer_size),
})
.collect();
Term {
tid: self.tid,
term: IrSub {
name: self.term.name,
blocks,
calling_convention: self.term.calling_convention,
},
}
}
}
/// An extern symbol, i.e. a function not contained in the binary but loaded from a shared library.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct ExternSymbol {
/// The term identifier of the extern symbol.
pub tid: Tid,
/// The addresses to call the extern symbol.
/// May be more than one, since we also identify thunk functions calling the extern symbol with the symbol itself.
pub addresses: Vec<String>,
/// The name of the extern symbol.
pub name: String,
/// The calling convention used (as reported by Ghidra, i.e. this may not be correct).
pub calling_convention: Option<String>,
/// The input and output arguments of the function.
pub arguments: Vec<Arg>,
/// If the function is assumed to never return to the caller, this flag is set to `true`.
pub no_return: bool,
/// If the function has a variable number of parameters, this flag is set to `true`.
pub has_var_args: bool,
}
impl ExternSymbol {
/// Artificially creates format string arguments as they are not detected by Ghidra.
/// For scanf calls, the format string parameter is added to the function signature.
/// For sscanf calls, the source and format string parameters are added to the function signature.
fn create_format_string_args_for_scanf_and_sscanf(
&mut self,
conventions: &[CallingConvention],
stack_pointer: &Variable,
cpu_arch: &str,
) {
let mut args: Vec<Arg> = Vec::new();
if cpu_arch == "x86_32" {
args.push(ExternSymbol::create_stack_arg(stack_pointer, 0));
if self.name == "sscanf" || self.name == "__isoc99_sscanf" {
args.push(ExternSymbol::create_stack_arg(
stack_pointer,
stack_pointer.size.as_bit_length(),
));
}
} else {
args.push(self.create_register_arg(0, conventions, stack_pointer));
if self.name == "sscanf" || self.name == "__isoc99_sscanf" {
args.push(self.create_register_arg(1, conventions, stack_pointer));
}
}
self.arguments.append(&mut args);
}
/// Matches the symbol's calling convention name and returns the desired integer parameter by index.
fn get_symbol_parameter_by_index(
&self,
conventions: &[CallingConvention],
index: usize,
) -> Option<String> {
if let Some(cconv) = self.calling_convention.clone() {
for convention in conventions.iter() {
if convention.name == cconv {
return Some(
convention
.integer_parameter_register
.get(index)
.unwrap()
.clone(),
);
}
}
}
None
}
/// Creates a stack argument for scanf or sscanf calls.
/// The address differs for both calls since the format string parameter is
/// at a different position.
fn create_stack_arg(stack_pointer: &Variable, address: usize) -> Arg {
Arg {
var: None,
location: Some(Expression {
mnemonic: ExpressionType::LOAD,
input0: Some(Variable {
name: None,
value: None,
address: Some(format!(
"{:0width$x}",
address,
width = stack_pointer.size.as_bit_length()
)),
size: stack_pointer.size,
is_virtual: false,
}),
input1: None,
input2: None,
}),
intent: ArgIntent::INPUT,
}
}
/// Creates a register argument for scanf and sscanf calls.
/// The format string index is different for each call.
fn create_register_arg(
&self,
index: usize,
conventions: &[CallingConvention],
stack_pointer: &Variable,
) -> Arg {
Arg {
var: Some(Variable {
name: self.get_symbol_parameter_by_index(conventions, index),
value: None,
address: None,
size: stack_pointer.size,
is_virtual: false,
}),
location: None,
intent: ArgIntent::INPUT,
}
}
/// Matches the symbols name with either scanf or sscanf.
fn is_scanf_or_sscanf(&self) -> bool {
matches!(
self.name.as_str(),
"scanf" | "sscanf" | "__isoc99_scanf" | "__isoc99_sscanf"
)
}
/// Convert an extern symbol parsed from Ghidra to the internally used IR.
fn into_ir_symbol(
self,
conventions: &[CallingConvention],
stack_pointer: &Variable,
cpu_arch: &str,
) -> IrExternSymbol {
let mut symbol = self.clone();
let mut parameters = Vec::new();
let mut return_values = Vec::new();
let symbol_has_input_args = symbol
.arguments
.iter()
.any(|arg| matches!(arg.intent, ArgIntent::INPUT));
if symbol.is_scanf_or_sscanf() && !symbol_has_input_args {
symbol.create_format_string_args_for_scanf_and_sscanf(
conventions,
stack_pointer,
cpu_arch,
);
}
for arg in symbol.arguments.iter() {
let ir_arg = if let Some(var) = arg.var.clone() {
IrArg::Register {
expr: IrExpression::Var(var.into()),
data_type: None,
}
} else if let Some(expr) = arg.location.clone() {
if expr.mnemonic == ExpressionType::LOAD {
let offset = i64::from_str_radix(
expr.input0
.clone()
.unwrap()
.address
.unwrap()
.trim_start_matches("0x"),
16,
)
.unwrap();
IrArg::Stack {
address: IrExpression::Var(stack_pointer.clone().into()).plus_const(offset),
size: expr.input0.unwrap().size,
data_type: None,
}
} else {
panic!()
}
} else {
panic!()
};
match arg.intent {
ArgIntent::INPUT => parameters.push(ir_arg),
ArgIntent::OUTPUT => return_values.push(ir_arg),
}
}
IrExternSymbol {
tid: self.tid,
addresses: self.addresses,
name: self.name,
calling_convention: self.calling_convention,
parameters,
return_values,
no_return: symbol.no_return,
has_var_args: symbol.has_var_args,
}
}
}
/// The program struct containing all information about the binary
/// except for CPU-architecture-related information.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Program {
/// The subfunctions contained in the binary.
pub subs: Vec<Term<Sub>>,
/// The extern symbols referenced by the binary.
pub extern_symbols: Vec<ExternSymbol>,
/// The term identifiers of entry points into the binary.
pub entry_points: Vec<Tid>,
/// The base address of the memory image of the binary in RAM as reported by Ghidra.
///
/// Note that Ghidra may add an offset to the image base address as reported by the binary itself.
pub image_base: String,
}
impl Program {
/// Convert a program parsed from Ghidra to the internally used IR.
///
/// The `binary_base_address` denotes the base address of the memory image of the binary
/// according to the program headers of the binary.
/// It is needed to detect whether Ghidra added a constant offset to all addresses of the memory address.
/// E.g. if the `binary_base_address` is 0 for shared object files,
/// Ghidra adds an offset so that the memory image does not actually start at address 0.
pub fn into_ir_program(
self,
binary_base_address: u64,
conventions: &[CallingConvention],
stack_pointer: &Variable,
cpu_arch: &str,
) -> IrProgram {
let subs = self
.subs
.into_iter()
.map(|sub| (sub.tid.clone(), sub.into_ir_sub_term(stack_pointer.size)))
.collect();
let extern_symbols = self
.extern_symbols
.into_iter()
.map(|symbol| {
(
symbol.tid.clone(),
symbol.into_ir_symbol(conventions, stack_pointer, cpu_arch),
)
})
.collect();
let address_base_offset =
u64::from_str_radix(&self.image_base, 16).unwrap() - binary_base_address;
IrProgram {
subs,
extern_symbols,
entry_points: self.entry_points.into_iter().collect(),
address_base_offset,
}
}
}
/// A struct describing a calling convention.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct CallingConvention {
/// The name of the calling convention.
#[serde(rename = "calling_convention")]
pub name: String,
/// Possible integer parameter registers.
integer_parameter_register: Vec<String>,
/// Possible float parameter registers.
float_parameter_register: Vec<String>,
/// Possible integer return registers.
return_register: Vec<String>,
/// Possible float return registers.
float_return_register: Vec<String>,
/// Callee-saved registers.
unaffected_register: Vec<String>,
/// Registers that may be overwritten by the call, i.e. caller-saved registers.
killed_by_call_register: Vec<String>,
}
impl CallingConvention {
/// Convert a calling convention parsed from Ghidra to the internally used IR.
fn into_ir_cconv(
self,
register_map: &HashMap<&String, &RegisterProperties>,
) -> IrCallingConvention {
let to_ir_var_list = |list: Vec<String>| {
list.into_iter()
.map(|register_name| {
let reg = register_map.get(®ister_name).cloned().unwrap();
assert_eq!(reg.register, reg.base_register);
reg.into()
})
.collect()
};
let to_ir_expression_list = |list: Vec<String>| {
list.into_iter()
.map(|register_name| {
let reg = register_map.get(®ister_name).cloned().unwrap();
let mut expression = IrExpression::Var(reg.into());
expression = replace_input_subregister(expression, register_map);
expression
})
.collect()
};
let to_ir_base_var_list = |list: Vec<String>| {
let register_set: BTreeSet<IrVariable> = list
.into_iter()
.map(|reg_name| {
let reg = register_map.get(®_name).unwrap();
let base_reg = *register_map.get(®.base_register).unwrap();
base_reg.into()
})
.collect();
register_set.into_iter().collect()
};
IrCallingConvention {
name: self.name,
integer_parameter_register: to_ir_var_list(self.integer_parameter_register),
float_parameter_register: to_ir_expression_list(self.float_parameter_register),
integer_return_register: to_ir_var_list(self.return_register),
float_return_register: to_ir_expression_list(self.float_return_register),
// TODO / FIXME: Using `to_ir_base_var_list` is technically incorrect.
// For example, on AArch64 only the bottom 64bit of some floating point registers are callee-saved.
// To fix this one may have to to change callee_saved_register to a Vec<Expression>.
callee_saved_register: to_ir_base_var_list(self.unaffected_register),
}
}
}
/// The project struct describing all known information about the binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Project {
/// The program struct containing all binary-specific information.
pub program: Term<Program>,
/// The CPU-architecture that the binary uses.
pub cpu_architecture: String,
/// The stack pointer register of the CPU-architecture.
pub stack_pointer_register: Variable,
/// Information about all CPU-architecture-specific registers.
pub register_properties: Vec<RegisterProperties>,
/// Information about known calling conventions for the given CPU architecture.
pub register_calling_convention: Vec<CallingConvention>,
/// Contains the properties of C data types. (e.g. size)
pub datatype_properties: DatatypeProperties,
}
impl Project {
/// Convert a project parsed from Ghidra to the internally used IR.
///
/// The `binary_base_address` denotes the base address of the memory image of the binary
/// according to the program headers of the binary.
pub fn into_ir_project(self, binary_base_address: u64) -> IrProject {
let register_map: HashMap<&String, &RegisterProperties> = self
.register_properties
.iter()
.map(|p| (&p.register, p))
.collect();
let mut program: Term<IrProgram> = Term {
tid: self.program.tid,
term: self.program.term.into_ir_program(
binary_base_address,
&self.register_calling_convention,
&self.stack_pointer_register,
&self.cpu_architecture,
),
};
// iterates over definitions and checks whether sub registers are used
// if so, they are swapped with subpieces of base registers
for sub in program.term.subs.values_mut() {
for blk in sub.term.blocks.iter_mut() {
super::subregister_substitution::replace_subregister_in_block(blk, ®ister_map);
}
}
// Iterate over symbol arguments and replace used sub-registers
for symbol in program.term.extern_symbols.values_mut() {
for arg in symbol.parameters.iter_mut() {
if let IrArg::Register { expr, .. } = arg {
*expr = replace_input_subregister(expr.clone(), ®ister_map);
}
}
for arg in symbol.return_values.iter_mut() {
if let IrArg::Register { expr, .. } = arg {
*expr = replace_input_subregister(expr.clone(), ®ister_map);
}
}
}
let register_set = self
.register_properties
.iter()
.filter_map(|reg| {
if reg.register == reg.base_register {
Some(reg.into())
} else {
None
}
})
.collect();
let calling_conventions = self
.register_calling_convention
.clone()
.into_iter()
.map(|cconv| (cconv.name.clone(), cconv.into_ir_cconv(®ister_map)))
.collect();
IrProject {
program,
cpu_architecture: self.cpu_architecture,
stack_pointer_register: self.stack_pointer_register.into(),
calling_conventions,
register_set,
datatype_properties: self.datatype_properties.clone(),
runtime_memory_image: RuntimeMemoryImage::empty(true),
}
}
}
impl Project {
/// This function runs normalization passes to bring the project into a form
/// that can be translated into the internally used intermediate representation.
///
/// Currently implemented normalization passes:
///
/// ### Insert explicit `LOAD` instructions for implicit memory loads in P-Code.
///
/// Ghidra generates implicit loads for memory accesses, whose address is a constant.
/// The pass converts them to explicit `LOAD` instructions.
///
/// ### Remove basic blocks of functions without correct starting block
///
/// Sometimes Ghidra generates a (correct) function start inside another function.
/// But if the function start is not also the start of a basic block,
/// we cannot handle it correctly (yet) as this would need splitting of basic blocks.
/// So instead we generate a log message and handle the function as a function without code,
/// i.e. a dead end in the control flow graph.
#[must_use]
pub fn normalize(&mut self) -> Vec<LogMessage> {
let mut log_messages = Vec::new();
// Insert explicit `LOAD` instructions for implicit memory loads in P-Code.
let generic_pointer_size = self.stack_pointer_register.size;
for sub in self.program.term.subs.iter_mut() {
for block in sub.term.blocks.iter_mut() {
block
.term
.add_load_defs_for_implicit_ram_access(generic_pointer_size);
}
}
// remove all blocks from functions that have no correct starting block and generate a log-message.
for sub in self.program.term.subs.iter_mut() {
if !sub.term.blocks.is_empty()
&& sub.tid.address != sub.term.blocks[0].tid.address
&& !sub
.term
.blocks
.iter()
.any(|block| block.tid.address == sub.tid.address)
{
log_messages.push(LogMessage::new_error(format!(
"Starting block of function {} ({}) not found.",
sub.term.name, sub.tid
)));
sub.term.blocks = Vec::new();
}
}
log_messages
}
}
#[cfg(test)]
mod tests;