1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
use super::{Blk, Datatype, Expression, Project, Variable};
use crate::prelude::*;
use std::fmt;
/// A `Sub` or subroutine represents a function with a given name and a list of basic blocks belonging to it.
///
/// Subroutines are *single-entry*,
/// i.e. calling a subroutine will execute the first block in the list of basic blocks.
/// A subroutine may have multiple exits, which are identified by `Jmp::Return` instructions.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Sub {
/// The name of the subroutine
pub name: String,
/// The basic blocks belonging to the subroutine.
/// The first block is also the entry point of the subroutine.
pub blocks: Vec<Term<Blk>>,
/// The calling convention used to call if known
pub calling_convention: Option<String>,
}
impl Term<Sub> {
/// Returns the ID suffix for this function.
pub fn id_suffix(&self) -> String {
format!("_{}", self.tid)
}
/// Returns true iff the function has an artificial sink block.
pub fn has_artifical_sink(&self) -> bool {
let id_suffix = self.id_suffix();
self.term
.blocks
.iter()
.any(|blk| blk.tid.is_artificial_sink_block(&id_suffix))
}
/// Returns a new artificial sink sub.
pub fn artificial_sink() -> Self {
Self {
tid: Tid::artificial_sink_sub(),
term: Sub {
name: "Artificial Sink Sub".to_string(),
blocks: vec![Term::<Blk>::artificial_sink("")],
calling_convention: None,
},
}
}
/// Adds an artificial sink block if there is none.
///
/// Returns true iff the artificial sink block was added.
pub fn add_artifical_sink(&mut self) -> bool {
if self.has_artifical_sink() {
false
} else {
let id_suffix = self.id_suffix();
self.term
.blocks
.push(Term::<Blk>::artificial_sink(&id_suffix));
true
}
}
}
/// A parameter or return argument of a function.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Arg {
/// The argument is passed in a register
Register {
/// The expression evaluating to the argument.
expr: Expression,
/// An optional data type indicator.
data_type: Option<Datatype>,
},
/// The argument is passed on the stack.
Stack {
/// The expression that computes the address of the argument on the stack.
address: Expression,
/// The size in bytes of the argument.
size: ByteSize,
/// An optional data type indicator.
data_type: Option<Datatype>,
},
}
impl Arg {
/// Generate a new register argument.
pub fn from_var(var: Variable, data_type_hint: Option<Datatype>) -> Arg {
Arg::Register {
expr: Expression::Var(var),
data_type: data_type_hint,
}
}
/// Returns the data type field of an Arg object.
pub fn get_data_type(&self) -> Option<Datatype> {
match self {
Arg::Register { data_type, .. } => data_type.clone(),
Arg::Stack { data_type, .. } => data_type.clone(),
}
}
/// If the argument is a stack argument,
/// return its offset relative to the current stack register value.
/// Return an error for register arguments or if the offset could not be computed.
pub fn eval_stack_offset(&self) -> Result<Bitvector, Error> {
let expression = match self {
Arg::Register { .. } => return Err(anyhow!("The argument is not a stack argument.")),
Arg::Stack { address, .. } => address,
};
Self::eval_stack_offset_expression(expression)
}
/// If the given expression computes a constant offset to the given stack register,
/// then return the offset.
/// Else return an error.
fn eval_stack_offset_expression(expression: &Expression) -> Result<Bitvector, Error> {
match expression {
Expression::Var(var) => Ok(Bitvector::zero(var.size.into())),
Expression::Const(bitvec) => Ok(bitvec.clone()),
Expression::BinOp { op, lhs, rhs } => {
let lhs = Self::eval_stack_offset_expression(lhs)?;
let rhs = Self::eval_stack_offset_expression(rhs)?;
lhs.bin_op(*op, &rhs)
}
Expression::UnOp { op, arg } => {
let arg = Self::eval_stack_offset_expression(arg)?;
arg.un_op(*op)
}
_ => Err(anyhow!("Expression type not supported for argument values")),
}
}
/// Return the bytesize of the argument.
pub fn bytesize(&self) -> ByteSize {
match self {
Arg::Register { expr, .. } => expr.bytesize(),
Arg::Stack { size, .. } => *size,
}
}
}
/// An extern symbol represents a funtion that is dynamically linked from another binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct ExternSymbol {
/// The term ID of the extern symbol.
pub tid: Tid,
/// Addresses of possibly multiple locations of the same extern symbol
pub addresses: Vec<String>,
/// The name of the extern symbol
pub name: String,
/// The calling convention used for the extern symbol if known
pub calling_convention: Option<String>,
/// Parameters of an extern symbol.
/// May be empty if there are no parameters or the parameters are unknown.
pub parameters: Vec<Arg>,
/// Return values of an extern symbol.
/// May be empty if there is no return value or the return values are unknown.
pub return_values: Vec<Arg>,
/// If set to `true`, the function is assumed to never return to its caller when called.
pub no_return: bool,
/// If the function has a variable number of parameters, this flag is set to `true`.
pub has_var_args: bool,
}
impl ExternSymbol {
/// If the extern symbol has exactly one return value that is passed in a register,
/// return the register.
pub fn get_unique_return_register(&self) -> Result<&Variable, Error> {
if self.return_values.len() == 1 {
match self.return_values[0] {
Arg::Register {
expr: Expression::Var(ref var),
..
} => Ok(var),
Arg::Register { .. } => Err(anyhow!("Return value is a sub-register")),
Arg::Stack { .. } => Err(anyhow!("Return value is passed on the stack")),
}
} else {
Err(anyhow!("Wrong number of return values"))
}
}
/// If the extern symbol has exactly one parameter, return the parameter.
pub fn get_unique_parameter(&self) -> Result<&Arg, Error> {
if self.parameters.len() == 1 {
Ok(&self.parameters[0])
} else {
Err(anyhow!("Wrong number of parameter values"))
}
}
/// Get the calling convention corresponding to the extern symbol.
pub fn get_calling_convention<'a>(&self, project: &'a Project) -> &'a CallingConvention {
project.get_calling_convention(self)
}
}
impl fmt::Display for ExternSymbol {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}] name:{}", self.tid, self.name)?;
for addr in self.addresses.iter() {
write!(f, " address:{}", addr)?;
}
Ok(())
}
}
/// Calling convention related data
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct CallingConvention {
/// The name of the calling convention
#[serde(rename = "calling_convention")]
pub name: String,
/// Possible integer parameter registers.
pub integer_parameter_register: Vec<Variable>,
/// Possible float parameter registers.
/// Given as expressions, since they are usually sub-register of larger floating point registers.
pub float_parameter_register: Vec<Expression>,
/// A list of possible return register for non-float values.
pub integer_return_register: Vec<Variable>,
/// A list of possible return register for float values.
/// Given as expressions, since they are usually sub-register of larger floating point registers.
pub float_return_register: Vec<Expression>,
/// A list of callee-saved register,
/// i.e. the values of these registers should be the same after the call as they were before the call.
pub callee_saved_register: Vec<Variable>,
}
impl CallingConvention {
/// Return a list of all parameter registers of the calling convention.
/// For parameters, where only a part of a register is the actual parameter,
/// the parameter register is approximated by the (larger) base register.
pub fn get_all_parameter_register(&self) -> Vec<&Variable> {
let mut register_list: Vec<&Variable> = self.integer_parameter_register.iter().collect();
for float_param_expr in self.float_parameter_register.iter() {
register_list.append(&mut float_param_expr.input_vars());
}
register_list
}
/// Return a list of all return registers of the calling convention.
/// For return register, where only a part of a register is the actual return register,
/// the return register is approximated by the (larger) base register.
pub fn get_all_return_register(&self) -> Vec<&Variable> {
let mut register_list: Vec<&Variable> = self.integer_return_register.iter().collect();
for float_param_expr in self.float_return_register.iter() {
register_list.append(&mut float_param_expr.input_vars());
}
register_list
}
}