1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
use super::*;
use crate::utils::binary::{parse_hex_string_to_u64, BareMetalConfig, MemorySegment};
use goblin::{elf, Object};
/// A representation of the runtime image of a binary after being loaded into memory by the loader.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct RuntimeMemoryImage {
/// Sequence of memory segments.
pub memory_segments: Vec<MemorySegment>,
/// Endianness
pub is_little_endian: bool,
/// True iff we are analyzing a Linux loadable kernel module.
pub is_lkm: bool,
}
impl RuntimeMemoryImage {
/// Generate a runtime memory image containing no memory segments.
/// Primarily useful in situations where any access to global memory would be an error.
pub fn empty(is_little_endian: bool) -> RuntimeMemoryImage {
RuntimeMemoryImage {
memory_segments: Vec::new(),
is_little_endian,
is_lkm: false,
}
}
/// Generate a runtime memory image for a given binary.
///
/// The function can parse ELF and PE files as input.
pub fn new(binary: &[u8]) -> Result<Self, Error> {
match Object::parse(binary)? {
Object::Elf(elf_file) => match elf_file.header.e_type {
elf::header::ET_REL => Self::from_elf_sections(binary, elf_file),
elf::header::ET_DYN | elf::header::ET_EXEC => {
Self::from_elf_segments(binary, elf_file)
}
ty => Err(anyhow!("Unsupported ELF type: e_type {}", ty)),
},
Object::PE(pe_file) => {
let mut memory_segments = Vec::new();
for header in pe_file.sections.iter() {
if (header.characteristics & 0x02000000) == 0 {
// Only load segments which are not discardable
memory_segments.push(MemorySegment::from_pe_section(binary, header));
}
}
if memory_segments.is_empty() {
return Err(anyhow!("No loadable segments found"));
}
let mut memory_image = RuntimeMemoryImage {
memory_segments,
is_little_endian: true,
is_lkm: false,
};
memory_image.add_global_memory_offset(pe_file.image_base as u64);
Ok(memory_image)
}
_ => Err(anyhow!("Object type not supported.")),
}
}
/// Generate a runtime memory image for an executable ELF file or shared object.
fn from_elf_segments(binary: &[u8], elf_file: elf::Elf) -> Result<Self, Error> {
let mut memory_segments = Vec::new();
for header in elf_file.program_headers.iter() {
if header.p_type == elf::program_header::PT_LOAD {
memory_segments.push(MemorySegment::from_elf_segment(binary, header));
}
}
if memory_segments.is_empty() {
return Err(anyhow!("No loadable segments found"));
}
Ok(Self {
memory_segments,
is_little_endian: elf_file.header.endianness().unwrap().is_little(),
is_lkm: false,
})
}
/// Generate a runtime memory image for a relocatable object file.
///
/// These files do not contain information about the expected memory layout.
/// Ghidra implements a basic loader that essentially concatenates all
/// `SHF_ALLOC` sections that are not `SHT_NULL`. They are placed in memory
/// as close as possible while respecting their alignment, starting at a
/// fixed address. We start mapping at zero and shift by the actual base
/// address that Ghidra has chosen after running our plugin.
///
/// NOTE: It is important that this implementation stays in sync with what
/// `processSectionHeaders` in [`ElfProgramBuilder`] does in the cases that
/// we care about.
///
/// [`ElfProgramBuilder`]: https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Base/src/main/java/ghidra/app/util/opinion/ElfProgramBuilder.java
fn from_elf_sections(binary: &[u8], elf_file: elf::Elf) -> Result<Self, Error> {
let mut next_base = 0;
Ok(Self {
memory_segments: elf_file
.section_headers
.iter()
.filter_map(|section_header| {
if is_loaded(section_header) {
let mem_seg =
MemorySegment::from_elf_section(binary, next_base, section_header);
next_base = mem_seg.base_address + mem_seg.bytes.len() as u64;
Some(mem_seg)
} else {
None
}
})
.collect(),
is_little_endian: elf_file.header.endianness().unwrap().is_little(),
is_lkm: get_section(".modinfo", &elf_file).is_some()
&& get_section(".gnu.linkonce.this_module", &elf_file).is_some(),
})
}
/// Generate a runtime memory image for a bare metal binary.
///
/// The generated runtime memory image contains:
/// * one memory region corresponding to non-volatile memory
/// * one memory region corresponding to volatile memory (RAM)
///
/// See [`BareMetalConfig`] for more information about the assumed memory layout for bare metal binaries.
pub fn new_from_bare_metal(
binary: &[u8],
bare_metal_config: &BareMetalConfig,
) -> Result<Self, Error> {
let processor_id_parts: Vec<&str> = bare_metal_config.processor_id.split(':').collect();
if processor_id_parts.len() < 3 {
return Err(anyhow!("Could not parse processor ID."));
}
let is_little_endian = match processor_id_parts[1] {
"LE" => true,
"BE" => false,
_ => return Err(anyhow!("Could not parse endianness of the processor ID.")),
};
let flash_base_address = parse_hex_string_to_u64(&bare_metal_config.flash_base_address)?;
let ram_base_address = parse_hex_string_to_u64(&bare_metal_config.ram_base_address)?;
let ram_size = parse_hex_string_to_u64(&bare_metal_config.ram_size)?;
// Check that the whole binary is contained in addressable space.
let address_bit_length = processor_id_parts[2].parse::<u64>()?;
match flash_base_address.checked_add(binary.len() as u64) {
Some(max_address) => {
if (max_address >> address_bit_length) != 0 {
return Err(anyhow!("Binary too large for given base address"));
}
}
None => return Err(anyhow!("Binary too large for given base address")),
}
Ok(RuntimeMemoryImage {
memory_segments: vec![
MemorySegment::from_bare_metal_file(binary, flash_base_address),
MemorySegment::new_bare_metal_ram_segment(ram_base_address, ram_size),
],
is_little_endian,
is_lkm: false,
})
}
/// Get the base address for the image of a binary when loaded into memory.
pub fn get_base_address(binary: &[u8]) -> Result<u64, Error> {
match Object::parse(binary)? {
Object::Elf(elf_file) => match elf_file.header.e_type {
elf::header::ET_REL => Ok(0),
elf::header::ET_DYN | elf::header::ET_EXEC => {
elf_file
.program_headers
.iter()
.find_map(|header| {
let vm_range = header.vm_range();
if !vm_range.is_empty()
&& header.p_type == goblin::elf::program_header::PT_LOAD
{
// The loadable segments have to occur in order in the program header table.
// So the start address of the first loadable segment is the base offset of the binary.
Some(vm_range.start as u64)
} else {
None
}
})
.context("No loadable segment bounds found.")
}
ty => Err(anyhow!("Unsupported ELF type: e_type {}", ty)),
},
_ => Err(anyhow!("Binary type not yet supported")),
}
}
/// Return whether values in the memory image should be interpreted in little-endian
/// or big-endian byte order.
pub fn is_little_endian_byte_order(&self) -> bool {
self.is_little_endian
}
/// Add a global offset to the base addresses of all memory segments.
/// Useful to align the addresses with those reported by Ghidra
/// if the Ghidra backend added such an offset to all addresses.
pub fn add_global_memory_offset(&mut self, offset: u64) {
for segment in self.memory_segments.iter_mut() {
segment.base_address += offset;
}
}
/// Read the contents of the memory image at the given address
/// to emulate a read instruction to global data at runtime.
///
/// The read method is endian-aware,
/// i.e. values are interpreted with the endianness of the CPU architecture.
/// If the address points to a writeable segment, the returned value is a `Ok(None)` value,
/// since the data may change during program execution.
///
/// Returns an error if the address is not contained in the global data address range.
pub fn read(&self, address: &Bitvector, size: ByteSize) -> Result<Option<Bitvector>, Error> {
let address = address.try_to_u64().unwrap();
for segment in self.memory_segments.iter() {
if address >= segment.base_address
&& u64::from(size) <= segment.base_address + segment.bytes.len() as u64
&& address <= segment.base_address + segment.bytes.len() as u64 - u64::from(size)
{
if segment.write_flag {
// The segment is writeable, thus we do not know the content at runtime.
return Ok(None);
}
let index = (address - segment.base_address) as usize;
let mut bytes = segment.bytes[index..index + u64::from(size) as usize].to_vec();
if self.is_little_endian {
bytes = bytes.into_iter().rev().collect();
}
let mut bytes = bytes.into_iter();
let mut bitvector = Bitvector::from_u8(bytes.next().unwrap());
for byte in bytes {
let new_byte = Bitvector::from_u8(byte);
bitvector = bitvector.bin_op(BinOpType::Piece, &new_byte)?;
}
return Ok(Some(bitvector));
}
}
// No segment fully contains the read.
Err(anyhow!("Address is not a valid global memory address."))
}
/// Read the contents of memory from a given address onwards until a null byte is reached and checks whether the
/// content is a valid UTF8 string.
pub fn read_string_until_null_terminator(&self, address: &Bitvector) -> Result<&str, Error> {
let address = address.try_to_u64().unwrap();
for segment in self.memory_segments.iter() {
if address >= segment.base_address
&& address <= segment.base_address + segment.bytes.len() as u64
{
let start_index = (address - segment.base_address) as usize;
if let Some(end_index) = segment.bytes[start_index..].iter().position(|&b| b == 0) {
let c_str = std::ffi::CStr::from_bytes_with_nul(
&segment.bytes[start_index..start_index + end_index + 1],
)?;
return Ok(c_str.to_str()?);
} else {
return Err(anyhow!("Not a valid string in memory."));
}
}
}
Err(anyhow!("Address is not a valid global memory address."))
}
/// Checks whether the constant is a global memory address.
pub fn is_global_memory_address(&self, constant: &Bitvector) -> bool {
if self.read(constant, constant.bytesize()).is_ok() {
return true;
}
false
}
/// Check whether all addresses in the given interval point to a readable segment in the runtime memory image.
///
/// Returns an error if the address interval intersects more than one memory segment
/// or if it does not point to global memory at all.
pub fn is_interval_readable(
&self,
start_address: u64,
end_address: u64,
) -> Result<bool, Error> {
for segment in self.memory_segments.iter() {
if start_address >= segment.base_address
&& start_address < segment.base_address + segment.bytes.len() as u64
{
if end_address <= segment.base_address + segment.bytes.len() as u64 {
return Ok(segment.read_flag);
} else {
return Err(anyhow!("Interval spans more than one segment"));
}
}
}
Err(anyhow!("Address not contained in runtime memory image"))
}
/// For an address to global read-only memory, return the memory segment it points to
/// and the index inside the segment, where the address points to.
///
/// Returns an error if the target memory segment is marked as writeable
/// or if the pointer does not point to global memory.
pub fn get_ro_data_pointer_at_address(
&self,
address: &Bitvector,
) -> Result<(&[u8], usize), Error> {
let address = address.try_to_u64().unwrap();
for segment in self.memory_segments.iter() {
if address >= segment.base_address
&& address < segment.base_address + segment.bytes.len() as u64
{
if segment.write_flag {
return Err(anyhow!("Target segment is writeable"));
} else {
return Ok((&segment.bytes, (address - segment.base_address) as usize));
}
}
}
Err(anyhow!("Pointer target not in global memory."))
}
/// Check whether the given address points to a writeable segment in the runtime memory image.
///
/// Returns an error if the address does not point to global memory.
pub fn is_address_writeable(&self, address: &Bitvector) -> Result<bool, Error> {
let address = address.try_to_u64().unwrap();
for segment in self.memory_segments.iter() {
if address >= segment.base_address
&& address < segment.base_address + segment.bytes.len() as u64
{
return Ok(segment.write_flag);
}
}
Err(anyhow!("Address not contained in runtime memory image"))
}
/// Check whether all addresses in the given interval point to a writeable segment in the runtime memory image.
///
/// Returns an error if the address interval intersects more than one memory segment
/// or if it does not point to global memory at all.
pub fn is_interval_writeable(
&self,
start_address: u64,
end_address: u64,
) -> Result<bool, Error> {
for segment in self.memory_segments.iter() {
if start_address >= segment.base_address
&& start_address < segment.base_address + segment.bytes.len() as u64
{
if end_address <= segment.base_address + segment.bytes.len() as u64 {
return Ok(segment.write_flag);
} else {
return Err(anyhow!("Interval spans more than one segment"));
}
}
}
Err(anyhow!("Address not contained in runtime memory image"))
}
}
/// Returns the section header of the first section with this name.
fn get_section<'a>(name: &str, elf_file: &'a elf::Elf<'a>) -> Option<&'a elf::SectionHeader> {
let sh_strtab = &elf_file.shdr_strtab;
elf_file.section_headers.iter().find(|section_header| {
matches!(sh_strtab.get_at(section_header.sh_name), Some(sh_name) if sh_name == name)
})
}
/// Returns true iff the section header will be loaded into memory by Ghidra.
#[inline]
fn is_loaded(section_header: &elf::SectionHeader) -> bool {
section_header.is_alloc()
&& section_header.sh_type != elf::section_header::SHT_NULL
&& section_header.sh_size != 0
}
#[cfg(test)]
mod tests {
use crate::{bitvec, intermediate_representation::*};
#[test]
fn read_endianness() {
let mut mem_image = RuntimeMemoryImage::mock();
let address = bitvec!("0x1001:4");
assert_eq!(
mem_image.read(&address, ByteSize::new(4)).unwrap(),
bitvec!("0xb4b3b2b1:4").into()
);
mem_image.is_little_endian = false;
assert_eq!(
mem_image.read(&address, ByteSize::new(4)).unwrap(),
bitvec!("0xb1b2b3b4:4").into()
);
}
#[test]
fn ro_data_pointer() {
let mem_image = RuntimeMemoryImage::mock();
let address = bitvec!("0x1002:4");
let (slice, index) = mem_image.get_ro_data_pointer_at_address(&address).unwrap();
assert_eq!(index, 2);
assert_eq!(&slice[index..], &[0xb2u8, 0xb3, 0xb4]);
}
#[test]
fn test_read_string_until_null_terminator() {
let mem_image = RuntimeMemoryImage::mock();
// the byte array contains "Hello World".
let expected_string: &str =
std::str::from_utf8(b"\x48\x65\x6c\x6c\x6f\x20\x57\x6f\x72\x6c\x64").unwrap();
let address = bitvec!("0x3002:4");
assert_eq!(
expected_string,
mem_image
.read_string_until_null_terminator(&address)
.unwrap(),
);
}
}