1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
use super::*;
use crate::analysis;
use crate::utils::log::LogMessage;
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
/// Contains implementation of the block duplication normalization pass.
mod block_duplication_normalization;
use block_duplication_normalization::*;
pub mod propagate_control_flow;
use propagate_control_flow::*;
/// The `Project` struct is the main data structure representing a binary.
///
/// It contains information about the disassembled binary
/// and about the execution environment of the binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Project {
/// All (known) executable code of the binary is contained in the `program` term.
pub program: Term<Program>,
/// The CPU architecture on which the binary is assumed to be executed.
pub cpu_architecture: String,
/// The stack pointer register for the given CPU architecture.
pub stack_pointer_register: Variable,
/// The known calling conventions that may be used for calls to extern functions.
pub calling_conventions: BTreeMap<String, CallingConvention>,
/// The set of all known physical registers for the CPU architecture.
/// Does only contain base registers, i.e. sub registers of other registers are not contained.
pub register_set: BTreeSet<Variable>,
/// Contains the properties of C data types. (e.g. size)
pub datatype_properties: DatatypeProperties,
/// Represents the memory after loading the binary.
pub runtime_memory_image: RuntimeMemoryImage,
}
impl Project {
/// Return the size (in bytes) for pointers of the given architecture.
pub fn get_pointer_bytesize(&self) -> ByteSize {
self.stack_pointer_register.size
}
/// Try to guess a standard calling convention from the list of calling conventions in the project.
pub fn get_standard_calling_convention(&self) -> Option<&CallingConvention> {
self.calling_conventions
.get("__stdcall")
.or_else(|| self.calling_conventions.get("__cdecl"))
.or_else(|| self.calling_conventions.get("__thiscall")) // for x86_64 Microsoft Windows binaries.
}
/// Try to find a specific calling convention in the list of calling conventions in the project.
/// If not given a calling convention (i.e. given `None`) or the given calling convention name was not found
/// then falls back to `get_standard_calling_convention`.
pub fn get_specific_calling_convention(
&self,
cconv_name_opt: &Option<String>,
) -> Option<&CallingConvention> {
// FIXME: On x86 Windows binaries we can get a strange edge case:
// For some reason we get cases where Ghidra annotates a function with `__cdecl` as calling convention,
// but the general calling convention list only contains `__fastcall` and `__thiscall`.
// We should investigate this, so that we do not have to fall back to the standard calling convention.
cconv_name_opt
.as_ref()
.and_then(|cconv_name| self.calling_conventions.get(cconv_name))
.or_else(|| self.get_standard_calling_convention())
}
/// Return the calling convention associated to the given extern symbol.
/// If the extern symbol has no annotated calling convention
/// then return the standard calling convention of the project instead.
///
/// This function panics if no suitable calling convention is found.
pub fn get_calling_convention(&self, extern_symbol: &ExternSymbol) -> &CallingConvention {
if let Some(cconv_name) = &extern_symbol.calling_convention {
self.calling_conventions.get(cconv_name).unwrap()
} else {
self.get_standard_calling_convention().unwrap()
}
}
}
impl Project {
/// For all expressions contained in the project,
/// replace trivially computable subexpressions like `a XOR a` with their result.
pub fn substitute_trivial_expressions(&mut self) {
for sub in self.program.term.subs.values_mut() {
for block in sub.term.blocks.iter_mut() {
for def in block.term.defs.iter_mut() {
match &mut def.term {
Def::Assign { value: expr, .. } | Def::Load { address: expr, .. } => {
expr.substitute_trivial_operations()
}
Def::Store { address, value } => {
address.substitute_trivial_operations();
value.substitute_trivial_operations();
}
}
}
for jmp in block.term.jmps.iter_mut() {
match &mut jmp.term {
Jmp::Branch(_) | Jmp::Call { .. } | Jmp::CallOther { .. } => (),
Jmp::BranchInd(expr)
| Jmp::CBranch {
condition: expr, ..
}
| Jmp::CallInd { target: expr, .. }
| Jmp::Return(expr) => expr.substitute_trivial_operations(),
}
}
}
}
}
/// Replaces the return-to TID of calls to non-returning functions with the
/// TID of the artificial sink block in the caller.
///
/// We distinguish two kinds of non-returning functions:
///
/// - extern symbols that are marked as non-returning, e.g.,`exit(..)`,
/// - functions without a return instruction.
///
/// For calls to the latter functions, no [`CallReturn`] nodes and
/// corresponding edges will be generated in the CFG. This implies that no
/// interprocedural analysis will happen for those calls. Furthermore, the
/// missing incoming edge to the return node implies that the node may be
/// optimized away by the [control flow propagation pass]. The reference to
/// the return site is now "dangling" and may lead to panics when
/// constructing the CFG (Issue #461).
///
/// Thus, we lose nothing if we retarget the return block, even if our
/// analysis is incorrect and the callee in fact returns to the originally
/// indicated site. Cases where we misclassify a callee include:
///
/// - functions ending in an indirect tail jump,
/// - epilogs like `lrd pc, [sp], #0x04` that are essentially a ret but
/// Ghidra sometimes thinks its an indirect jump,
/// - cases where the callee code that we get from Gidra is incomplete.
///
/// This heuristic works better when the block-to-sub mapping is unique
/// since this pass may inline return site into callees that end in a tail
/// jump, i.e., call this after [`make_block_to_sub_mapping_unique`].
/// This pass preserves a unique block-to-sub mapping.
///
/// [`CallReturn`]: crate::analysis::graph::Node::CallReturn
/// [control flow propagation pass]: mod@propagate_control_flow
#[must_use]
fn retarget_non_returning_calls_to_artificial_sink(&mut self) -> Vec<LogMessage> {
let (non_returning_subs, mut log_messages) = self.find_non_returning_subs();
// INVARIANT: A unique block-to-sub mapping is preserved.
for sub in self
.program
.term
.subs
.values_mut()
.filter(|sub| !sub.tid.is_artificial_sink_sub())
{
let sub_id_suffix = sub.id_suffix();
let mut one_or_more_call_retargeted = false;
for block in sub.term.blocks.iter_mut() {
for jmp in block.term.jmps.iter_mut() {
let Jmp::Call {
target,
return_: Some(return_tid),
} = &mut jmp.term
else {
continue;
};
if return_tid.is_artificial_sink_block(&sub_id_suffix) {
// The call is already returning to the function's
// artificial sink so there is nothing to do.
continue;
} else if let Some(extern_symbol) = self.program.term.extern_symbols.get(target)
{
if extern_symbol.no_return {
// Reroute returns from calls to non-returning
// library functions.
*return_tid = Tid::artificial_sink_block(&sub_id_suffix);
one_or_more_call_retargeted = true;
}
} else if non_returning_subs.contains(target) {
// Reroute returns from calls to non-returning
// functions within the program.
log_messages.push(LogMessage::new_info(format!(
"Call @ {} to {} does not return to {}.",
jmp.tid, target, return_tid
)));
*return_tid = Tid::artificial_sink_block(&sub_id_suffix);
one_or_more_call_retargeted = true;
}
}
}
// Add artificial sink block if required.
if one_or_more_call_retargeted {
sub.add_artifical_sink();
}
}
log_messages
}
/// Returns the set of all subs without a return instruction.
fn find_non_returning_subs(&self) -> (HashSet<Tid>, Vec<LogMessage>) {
let mut log_messages = Vec::new();
let non_returning_subs = self
.program
.term
.subs
.values()
.filter_map(|sub| {
let sub_returns = sub.term.blocks.iter().any(|block| {
block
.term
.jmps
.iter()
.any(|jmp| matches!(jmp.term, Jmp::Return(..)))
});
if sub_returns || sub.tid.is_artificial_sink_sub() {
None
} else {
log_messages.push(LogMessage::new_info(format!(
"{} is non-returning.",
sub.tid
)));
Some(sub.tid.clone())
}
})
.collect();
(non_returning_subs, log_messages)
}
/// Adds a function that serves as an artificial sink in the CFG.
fn add_artifical_sink(&mut self) {
self.program
.term
.subs
.insert(Tid::artificial_sink_sub(), Term::<Sub>::artificial_sink());
}
/// Returns the set of all valid jump targets.
fn find_all_jump_targets(&self) -> HashSet<Tid> {
let mut jump_target_tids = HashSet::new();
for sub in self.program.term.subs.values() {
jump_target_tids.insert(sub.tid.clone());
for block in sub.term.blocks.iter() {
jump_target_tids.insert(block.tid.clone());
}
}
for symbol_tid in self.program.term.extern_symbols.keys() {
jump_target_tids.insert(symbol_tid.clone());
}
jump_target_tids
}
/// Replace jumps to nonexisting TIDs with jumps to a dummy target
/// representing an artificial sink in the control flow graph.
/// Return a log message for each replaced jump target.
///
/// Nonexisting jump targets may be generated by the Ghidra backend
/// if the data at the target address is not a valid assembly instruction.
#[must_use]
fn remove_references_to_nonexisting_tids(&mut self) -> Vec<LogMessage> {
let mut log_messages = Vec::new();
let all_jump_targets = self.find_all_jump_targets();
// Replace all jumps to non-existing jump targets with jumps to dummy
// targets.
for sub in self.program.term.subs.values_mut() {
for block in sub.term.blocks.iter_mut() {
if let Err(mut logs) =
block.remove_nonexisting_indirect_jump_targets(&all_jump_targets)
{
log_messages.append(&mut logs);
}
for jmp in block.term.jmps.iter_mut() {
if let Err(log_msg) =
jmp.retarget_nonexisting_jump_targets_to_artificial_sink(&all_jump_targets)
{
log_messages.push(log_msg);
}
}
}
}
log_messages
}
/// Remove blocks, defs and jumps with duplicate TIDs and return log messages on such cases.
/// Since such cases break the fundamental invariant that each TID is unique,
/// they result in errors if not removed.
///
/// Note that each case has a bug as a root cause.
/// This code is only a workaround so that before the corresponding bug is fixed
/// the rest of the binary can still be analyzed.
#[must_use]
fn remove_duplicate_tids(&mut self) -> Vec<LogMessage> {
let mut known_tids = HashSet::new();
let mut errors = Vec::new();
known_tids.insert(self.program.tid.clone());
for sub in self.program.term.subs.values_mut() {
if !known_tids.insert(sub.tid.clone()) {
panic!("Duplicate of TID {} encountered.", sub.tid);
}
let mut filtered_blocks = Vec::new();
for block in &sub.term.blocks {
if known_tids.insert(block.tid.clone()) {
filtered_blocks.push(block.clone());
} else {
errors.push(LogMessage::new_error(&format!(
"Removed duplicate of TID {}. This is a bug in the cwe_checker!",
block.tid
)));
}
}
sub.term.blocks = filtered_blocks;
for block in sub.term.blocks.iter_mut() {
let mut filtered_defs = Vec::new();
let mut filtered_jmps = Vec::new();
for def in &block.term.defs {
if known_tids.insert(def.tid.clone()) {
filtered_defs.push(def.clone());
} else {
errors.push(LogMessage::new_error(&format!(
"Removed duplicate of TID {}. This is a Bug in the cwe_checker!",
def.tid
)));
}
}
for jmp in &block.term.jmps {
if known_tids.insert(jmp.tid.clone()) {
filtered_jmps.push(jmp.clone());
} else {
errors.push(LogMessage::new_error(&format!(
"Removed duplicate of TID {}. This is a Bug in the cwe_checker!",
jmp.tid
)));
}
}
block.term.defs = filtered_defs;
block.term.jmps = filtered_jmps;
}
}
errors
}
/// Performs only the normalizations necessary to analyze the project.
///
/// Runs only the normalization passes that bring the project to a form
/// in which it can be consumed by the later analyses. Currently those are:
///
/// - Removal of duplicate TIDs. (This is a workaround for a bug in the
/// P-Code-Extractor and should be removed once the bug is fixed.)
/// - Replacement of references to nonexisting TIDs with jumps to artificial
/// sink targets in the CFG.
/// - Duplication of blocks so that if a block is contained in several
/// functions, each function gets its own unique copy.
/// - Replacement of return addresses for calls to non-returning functions
/// with artificial sink targets.
///
/// After those passes all of the later analyses can be computed. However,
/// they are expected to run faster if you also run
/// [`Project::normalize_optimize`] beforehand.
#[must_use]
pub fn normalize_basic(&mut self) -> Vec<LogMessage> {
let mut logs = self.remove_duplicate_tids();
self.add_artifical_sink();
logs.append(self.remove_references_to_nonexisting_tids().as_mut());
make_block_to_sub_mapping_unique(self);
logs.append(
self.retarget_non_returning_calls_to_artificial_sink()
.as_mut(),
);
logs
}
/// Performs only the optimizing normalization passes.
///
/// [`Project::normalize_basic`] **must** be called before this method.
///
/// Runs only the optimization passes that transform the program to an
/// equivalent, simpler representation. This step is exprected to improve
/// the speed and precision of later analyses.
///
/// Currently, the following optimizations are performed:
///
/// - Propagate input expressions along variable assignments.
/// - Replace trivial expressions like `a XOR a` with their result.
/// - Remove dead register assignments.
/// - Propagate the control flow along chains of conditionals with the same condition.
/// - Substitute bitwise `AND` and `OR` operations with the stack pointer
/// in cases where the result is known due to known stack pointer alignment.
#[must_use]
pub fn normalize_optimize(&mut self) -> Vec<LogMessage> {
analysis::expression_propagation::propagate_input_expression(self);
self.substitute_trivial_expressions();
analysis::dead_variable_elimination::remove_dead_var_assignments(self);
propagate_control_flow(self);
analysis::stack_alignment_substitution::substitute_and_on_stackpointer(self)
.unwrap_or_default()
}
/// Run all normalization passes over the project.
///
/// Convenience wrapper that calls [`Project::normalize_basic`] and
/// [`Project::normalize_optimize`].
#[must_use]
pub fn normalize(&mut self) -> Vec<LogMessage> {
let mut logs = self.normalize_basic();
logs.append(self.normalize_optimize().as_mut());
logs
}
}
impl Term<Jmp> {
/// If the TID of a jump target, call target, or return target is not
/// contained in in the known jump targets, replace it with a dummy TID and
/// return an error message.
fn retarget_nonexisting_jump_targets_to_artificial_sink(
&mut self,
all_jump_targets: &HashSet<Tid>,
) -> Result<(), LogMessage> {
use Jmp::*;
match &mut self.term {
BranchInd(_) => Ok(()),
Branch(tid) | CBranch { target: tid, .. } if !all_jump_targets.contains(tid) => {
let error_msg = format!("Jump target at {} does not exist", tid.address);
let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
*tid = Tid::artificial_sink_block("");
Err(error_log)
}
Call { target, return_ } if !all_jump_targets.contains(target) => {
let error_msg = format!("Call target at {} does not exist", target.address);
let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
*target = Tid::artificial_sink_sub();
*return_ = None;
Err(error_log)
}
Call {
return_: Some(return_tid),
..
}
| CallInd {
return_: Some(return_tid),
..
}
| CallOther {
return_: Some(return_tid),
..
} if !all_jump_targets.contains(return_tid) => {
let error_msg = format!("Return target at {} does not exist", return_tid.address);
let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
*return_tid = Tid::artificial_sink_block("");
Err(error_log)
}
_ => Ok(()),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn retarget_nonexisting_jumps() {
let mut jmp_term = Term {
tid: Tid::new("jmp"),
term: Jmp::Branch(Tid::new("nonexisting_target")),
};
assert_eq!(jmp_term.term, Jmp::Branch(Tid::new("nonexisting_target")));
assert!(jmp_term
.retarget_nonexisting_jump_targets_to_artificial_sink(&HashSet::new(),)
.is_err());
assert_eq!(jmp_term.term, Jmp::Branch(Tid::artificial_sink_block("")));
}
}