1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
use std::fmt::{self, Debug};
use super::ByteSize;
use super::Variable;
use crate::prelude::*;
mod builder;
mod trivial_operation_substitution;
/// An expression is a calculation rule
/// on how to compute a certain value given some variables (register values) as input.
///
/// The basic building blocks of expressions are the same as for Ghidra P-Code.
/// However, expressions can be nested, unlike original P-Code.
///
/// Computing the value of an expression is a side-effect-free operation.
///
/// Expressions are typed in the sense that each expression has a `ByteSize`
/// indicating the size of the result when evaluating the expression.
/// Some expressions impose restrictions on the sizes of their inputs
/// for the expression to be well-typed.
///
/// All operations are defined the same as the corresponding P-Code operation.
/// Further information about specific operations can be obtained by looking up the P-Code mnemonics in the
/// [P-Code Reference Manual](https://ghidra.re/courses/languages/html/pcoderef.html).
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Expression {
/// A variable representing a register or temporary value of known size.
Var(Variable),
/// A constant value represented by a bitvector.
Const(Bitvector),
/// A binary operation.
/// Note that most (but not all) operations require the left hand side (`lhs`)
/// and right hand side (`rhs`) to be of equal size.
BinOp {
/// The opcode/type of the operation
op: BinOpType,
/// The left hand side expression
lhs: Box<Expression>,
/// The right hand side expression
rhs: Box<Expression>,
},
/// A unary operation
UnOp {
/// The opcode/type of the operation
op: UnOpType,
/// The argument expression
arg: Box<Expression>,
},
/// A cast operation for type cast between integer and floating point types of different byte lengths.
Cast {
/// The opcode/type of the cast operation
op: CastOpType,
/// The byte size of the result value of the expresion
size: ByteSize,
/// The argument of the expression
arg: Box<Expression>,
},
/// An unknown value but with known size.
/// This may be generated for e.g. unsupported assembly instructions.
/// Note that computation of an unknown value is still required to be side-effect-free!
Unknown {
/// A description of the operation
description: String,
/// The byte size of the result of the unknown expression
size: ByteSize,
},
/// Extracting a sub-bitvector from the argument expression.
Subpiece {
/// The lowest byte (i.e. least significant byte if interpreted as integer) of the sub-bitvector to extract.
low_byte: ByteSize,
/// The size of the resulting sub-bitvector
size: ByteSize,
/// The argument from which to extract the bitvector from.
arg: Box<Expression>,
},
}
/// The type/mnemonic of a binary operation.
/// See the Ghidra P-Code documentation for more information.
#[allow(missing_docs)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum BinOpType {
Piece,
IntEqual,
IntNotEqual,
IntLess,
IntSLess,
IntLessEqual,
IntSLessEqual,
IntAdd,
IntSub,
IntCarry,
IntSCarry,
IntSBorrow,
IntXOr,
IntAnd,
IntOr,
IntLeft,
IntRight,
IntSRight,
IntMult,
IntDiv,
IntRem,
IntSDiv,
IntSRem,
BoolXOr,
BoolAnd,
BoolOr,
FloatEqual,
FloatNotEqual,
FloatLess,
FloatLessEqual,
FloatAdd,
FloatSub,
FloatMult,
FloatDiv,
}
/// The type/mnemonic of a typecast
/// See the Ghidra P-Code documentation for more information.
#[allow(missing_docs)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum CastOpType {
IntZExt,
IntSExt,
Int2Float,
Float2Float,
Trunc,
PopCount,
LzCount,
}
/// The type/mnemonic of an unary operation
/// See the Ghidra P-Code documentation for more information.
#[allow(missing_docs)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum UnOpType {
IntNegate,
Int2Comp,
BoolNegate,
FloatNegate,
FloatAbs,
FloatSqrt,
FloatCeil,
FloatFloor,
FloatRound,
FloatNaN,
}
impl Expression {
/// Return the size (in bytes) of the result value of the expression.
pub fn bytesize(&self) -> ByteSize {
use BinOpType::*;
use Expression::*;
match self {
Var(var) => var.size,
Const(bitvec) => bitvec.width().into(),
BinOp { op, lhs, rhs } => match op {
Piece => lhs.bytesize() + rhs.bytesize(),
IntEqual | IntNotEqual | IntLess | IntSLess | IntLessEqual | IntSLessEqual
| IntCarry | IntSCarry | IntSBorrow | BoolXOr | BoolOr | BoolAnd | FloatEqual
| FloatNotEqual | FloatLess | FloatLessEqual => ByteSize::new(1),
IntAdd | IntSub | IntAnd | IntOr | IntXOr | IntLeft | IntRight | IntSRight
| IntMult | IntDiv | IntRem | IntSDiv | IntSRem | FloatAdd | FloatSub
| FloatMult | FloatDiv => lhs.bytesize(),
},
UnOp { op, arg } => match op {
UnOpType::FloatNaN => ByteSize::new(1),
_ => arg.bytesize(),
},
Cast { size, .. } | Unknown { size, .. } | Subpiece { size, .. } => *size,
}
}
/// Return an array of all input variables of the given expression.
/// The array may contain duplicates.
pub fn input_vars(&self) -> Vec<&Variable> {
use Expression::*;
match self {
Var(var) => vec![var],
Const(_) | Unknown { .. } => Vec::new(),
BinOp { op: _, lhs, rhs } => {
let mut vars = lhs.input_vars();
vars.append(&mut rhs.input_vars());
vars
}
UnOp { arg, .. } | Cast { arg, .. } | Subpiece { arg, .. } => arg.input_vars(),
}
}
/// Substitute every occurrence of `input_var` in `self` with the given `replace_with_expression`.
pub fn substitute_input_var(
&mut self,
input_var: &Variable,
replace_with_expression: &Expression,
) {
use Expression::*;
match self {
Const(_) | Unknown { .. } => (),
Var(var) if var == input_var => *self = replace_with_expression.clone(),
Var(_) => (),
Subpiece { arg, .. } | Cast { arg, .. } | UnOp { arg, .. } => {
arg.substitute_input_var(input_var, replace_with_expression);
}
BinOp { lhs, rhs, .. } => {
lhs.substitute_input_var(input_var, replace_with_expression);
rhs.substitute_input_var(input_var, replace_with_expression);
}
}
}
/// Compute a recursion depth for the expression.
///
/// Because of the recursive nature of the [Expression] type,
/// overly complex expressions are very costly to clone, which in turn can negatively affect some analyses.
/// The recursion depth measure can be used to detect and handle such cases.
pub fn recursion_depth(&self) -> u64 {
use Expression::*;
match self {
Const(_) | Unknown { .. } | Var(_) => 0,
Subpiece { arg, .. } | Cast { arg, .. } | UnOp { arg, .. } => arg.recursion_depth() + 1,
BinOp { lhs, rhs, .. } => {
std::cmp::max(lhs.recursion_depth(), rhs.recursion_depth()) + 1
}
}
}
}
impl fmt::Display for Expression {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Expression::Var(var) => write!(f, "{var}"),
Expression::Const(c) => {
write!(f, "0x{:016x}:{}", c, c.bytesize())
}
Expression::BinOp { op, lhs, rhs } => match op {
BinOpType::IntMult
| BinOpType::IntDiv
| BinOpType::IntRem
| BinOpType::FloatMult
| BinOpType::FloatDiv => write!(f, "{lhs} {op} {rhs}"),
_ => write!(f, "({lhs} {op} {rhs})"),
},
Expression::UnOp { op, arg } => write!(f, "{op}({arg})"),
Expression::Cast { op, size, arg } => write!(f, "{op}({arg}):{size}"),
Expression::Unknown {
description,
size: _,
} => write!(f, "{description}"),
Expression::Subpiece {
low_byte,
size,
arg,
} => {
write!(f, "({})[{}-{}]", arg, low_byte.0, low_byte.0 + size.0 - 1)
}
}
}
}
impl fmt::Display for BinOpType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
BinOpType::IntEqual => write!(f, "=="),
BinOpType::IntNotEqual => write!(f, "!="),
BinOpType::IntLess => write!(f, "<"),
BinOpType::IntSLess => write!(f, "<"),
BinOpType::IntLessEqual => write!(f, "<="),
BinOpType::IntSLessEqual => write!(f, "<="),
BinOpType::IntAdd => write!(f, "+"),
BinOpType::IntSub => write!(f, "-"),
BinOpType::IntXOr => write!(f, "^"),
BinOpType::IntAnd => write!(f, "&"),
BinOpType::IntOr => write!(f, "|"),
BinOpType::IntLeft => write!(f, "<<"),
BinOpType::IntRight => write!(f, ">>"),
BinOpType::IntMult => write!(f, "*"),
BinOpType::IntDiv => write!(f, "/"),
BinOpType::IntRem => write!(f, "%"),
BinOpType::BoolAnd => write!(f, "&&"),
BinOpType::BoolOr => write!(f, "||"),
_ => write!(f, "{self:?}"),
}
}
}
impl fmt::Display for UnOpType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
UnOpType::BoolNegate => write!(f, "¬"),
UnOpType::IntNegate => write!(f, "-"),
_ => write!(f, "{self:?}"),
}
}
}
impl fmt::Display for CastOpType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{self:?}")
}
}
#[cfg(test)]
mod tests;