1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
use super::*;
/// A bitvector is a fixed-length vector of bits
/// with the semantics of a CPU register,
/// i.e. it supports two's complement modulo arithmetic.
///
/// Bitvector is just an alias for the [`apint::ApInt`] type.
pub type Bitvector = apint::ApInt;
/// A trait to extend the bitvector type with useful helper functions
/// that are not contained in the [`apint`] crate.
pub trait BitvectorExtended: Sized {
/// Resize `self` to the target byte size by either zero extending or truncating `self`.
fn into_resize_unsigned(self, size: ByteSize) -> Self;
/// Resize `self` to the target byte size by either sign extending or truncating `self`.
fn into_resize_signed(self, size: ByteSize) -> Self;
/// Perform a cast operation on the bitvector.
/// Returns an error for non-implemented cast operations (currently all float-related casts).
fn cast(&self, kind: CastOpType, width: ByteSize) -> Result<Self, Error>;
/// Extract a subpiece from the given bitvector.
fn subpiece(&self, low_byte: ByteSize, size: ByteSize) -> Self;
/// Perform a unary operation on the given bitvector.
/// Returns an error for non-implemented operations (currently all float-related operations).
fn un_op(&self, op: UnOpType) -> Result<Self, Error>;
/// Perform a binary operation on the given bitvectors.
/// Returns an error for non-implemented operations (currently all float-related operations).
fn bin_op(&self, op: BinOpType, rhs: &Self) -> Result<Self, Error>;
/// Returns the result of `self + rhs` if the computation does not result in a signed integer overflow or underflow.
fn signed_add_overflow_checked(&self, rhs: &Self) -> Option<Self>;
/// Returns the result of `self - rhs` if the computation does not result in a signed integer overflow or underflow.
fn signed_sub_overflow_checked(&self, rhs: &Self) -> Option<Self>;
/// Return the result of multiplying `self` with `rhs`
/// and a flag that is set to `true` if the multiplication resulted in a signed integer overflow or underflow.
///
/// Returns an error for bitvectors larger than 8 bytes,
/// since multiplication for them is not yet implemented in the [`apint`] crate.
fn signed_mult_with_overflow_flag(&self, rhs: &Self) -> Result<(Self, bool), Error>;
/// Return the size in bytes of the bitvector.
fn bytesize(&self) -> ByteSize;
}
impl BitvectorExtended for Bitvector {
/// Perform a cast operation on the bitvector.
/// Returns an error for non-implemented cast operations (currently all float-related casts).
fn cast(&self, kind: CastOpType, width: ByteSize) -> Result<Self, Error> {
match kind {
CastOpType::IntZExt => Ok(self.clone().into_zero_extend(width).unwrap()),
CastOpType::IntSExt => Ok(self.clone().into_sign_extend(width).unwrap()),
CastOpType::Int2Float | CastOpType::Float2Float | CastOpType::Trunc => {
Err(anyhow!("Float operations not yet implemented"))
}
CastOpType::PopCount => {
Ok(Bitvector::from_u64(self.count_ones() as u64).into_resize_unsigned(width))
}
CastOpType::LzCount => {
Ok(Bitvector::from_u64(self.leading_zeros() as u64).into_resize_unsigned(width))
}
}
}
/// Extract a subpiece from the given bitvector.
fn subpiece(&self, low_byte: ByteSize, size: ByteSize) -> Self {
self.clone()
.into_checked_lshr(low_byte.as_bit_length())
.unwrap()
.into_truncate(size.as_bit_length())
.unwrap()
}
/// Perform a unary operation on the given bitvector.
/// Returns an error for non-implemented operations (currently all float-related operations).
fn un_op(&self, op: UnOpType) -> Result<Self, Error> {
use UnOpType::*;
match op {
Int2Comp => Ok(-self.clone()),
IntNegate => Ok(self.clone().into_bitnot()),
BoolNegate => {
if self.is_zero() {
Ok(Bitvector::from_u8(1))
} else {
assert_eq!(self, &Bitvector::from_u8(1)); // Any other value would indicate a bug.
Ok(Bitvector::from_u8(0))
}
}
FloatNegate | FloatAbs | FloatSqrt | FloatCeil | FloatFloor | FloatRound | FloatNaN => {
Err(anyhow!("Float operations not yet implemented"))
}
}
}
/// Perform a binary operation on the given bitvectors.
/// Returns an error for non-implemented operations (currently all float-related operations)
/// or for divisions-by-zero.
fn bin_op(&self, op: BinOpType, rhs: &Self) -> Result<Self, Error> {
use BinOpType::*;
match op {
Piece => {
let new_bitwidth = self.width().to_usize() + rhs.width().to_usize();
let upper_bits = self
.clone()
.into_zero_extend(new_bitwidth)
.unwrap()
.into_checked_shl(rhs.width().to_usize())
.unwrap();
let lower_bits = rhs.clone().into_zero_extend(new_bitwidth).unwrap();
Ok(upper_bits | &lower_bits)
}
IntAdd => Ok(self + rhs),
IntSub => Ok(self - rhs),
IntCarry => {
let result = self + rhs;
if result.checked_ult(self).unwrap() || result.checked_ult(rhs).unwrap() {
Ok(Bitvector::from_u8(1))
} else {
Ok(Bitvector::from_u8(0))
}
}
IntSCarry => {
let result = apint::Int::from(self + rhs);
let signed_self = apint::Int::from(self.clone());
let signed_rhs = apint::Int::from(rhs.clone());
if (result.is_negative() && signed_self.is_positive() && signed_rhs.is_positive())
|| (!result.is_negative()
&& signed_self.is_negative()
&& signed_rhs.is_negative())
{
Ok(Bitvector::from_u8(1))
} else {
Ok(Bitvector::from_u8(0))
}
}
IntSBorrow => {
let result = apint::Int::from(self - rhs);
let signed_self = apint::Int::from(self.clone());
let signed_rhs = apint::Int::from(rhs.clone());
if (result.is_negative() && !signed_self.is_positive() && signed_rhs.is_negative())
|| (result.is_positive()
&& signed_self.is_negative()
&& signed_rhs.is_positive())
{
Ok(Bitvector::from_u8(1))
} else {
Ok(Bitvector::from_u8(0))
}
}
IntMult => {
// FIXME: Multiplication for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
if self.width().to_usize() > 64 {
Err(anyhow!("Multiplication and division of integers larger than 8 bytes not yet implemented."))
} else {
Ok(self * rhs)
}
}
IntDiv => {
// FIXME: Division for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
if self.width().to_usize() > 64 {
Err(anyhow!("Multiplication and division of integers larger than 8 bytes not yet implemented."))
} else {
Ok(self.clone().into_checked_udiv(rhs)?)
}
}
IntSDiv => {
// FIXME: Division for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
if self.width().to_usize() > 64 {
Err(anyhow!("Multiplication and division of integers larger than 8 bytes not yet implemented."))
} else {
Ok(self.clone().into_checked_sdiv(rhs)?)
}
}
IntRem => {
// FIXME: Division for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
if self.width().to_usize() > 64 {
Err(anyhow!("Multiplication and division of integers larger than 8 bytes not yet implemented."))
} else {
Ok(self.clone().into_checked_urem(rhs)?)
}
}
IntSRem => {
// FIXME: Division for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
if self.width().to_usize() > 64 {
Err(anyhow!("Multiplication and division of integers larger than 8 bytes not yet implemented."))
} else {
Ok(self.clone().into_checked_srem(rhs)?)
}
}
IntLeft => {
let shift_amount = rhs.try_to_u64().unwrap() as usize;
if shift_amount < self.width().to_usize() {
Ok(self.clone().into_checked_shl(shift_amount).unwrap())
} else {
Ok(Bitvector::zero(self.width()))
}
}
IntRight => {
let shift_amount = rhs.try_to_u64().unwrap() as usize;
if shift_amount < self.width().to_usize() {
Ok(self.clone().into_checked_lshr(shift_amount).unwrap())
} else {
Ok(Bitvector::zero(self.width()))
}
}
IntSRight => {
let shift_amount = rhs.try_to_u64().unwrap() as usize;
if shift_amount < self.width().to_usize() {
Ok(self.clone().into_checked_ashr(shift_amount).unwrap())
} else {
let signed_bitvec = apint::Int::from(self.clone());
if signed_bitvec.is_negative() {
let minus_one =
Bitvector::zero(self.width()) - &Bitvector::one(self.width());
Ok(minus_one)
} else {
Ok(Bitvector::zero(self.width()))
}
}
}
IntAnd | BoolAnd => Ok(self & rhs),
IntOr | BoolOr => Ok(self | rhs),
IntXOr | BoolXOr => Ok(self ^ rhs),
IntEqual => {
assert_eq!(self.width(), rhs.width());
Ok(Bitvector::from((self == rhs) as u8))
}
IntNotEqual => {
assert_eq!(self.width(), rhs.width());
Ok(Bitvector::from((self != rhs) as u8))
}
IntLess => Ok(Bitvector::from(self.checked_ult(rhs).unwrap() as u8)),
IntLessEqual => Ok(Bitvector::from(self.checked_ule(rhs).unwrap() as u8)),
IntSLess => Ok(Bitvector::from(self.checked_slt(rhs).unwrap() as u8)),
IntSLessEqual => Ok(Bitvector::from(self.checked_sle(rhs).unwrap() as u8)),
FloatEqual | FloatNotEqual | FloatLess | FloatLessEqual => {
// TODO: Implement floating point comparison operators!
Err(anyhow!("Float operations not yet implemented"))
}
FloatAdd | FloatSub | FloatMult | FloatDiv => {
// TODO: Implement floating point arithmetic operators!
Err(anyhow!("Float operations not yet implemented"))
}
}
}
/// Returns the result of `self + rhs` if the computation does not result in a signed integer overflow or underflow.
fn signed_add_overflow_checked(&self, rhs: &Self) -> Option<Self> {
let result = self.clone().into_checked_add(rhs).unwrap();
match (rhs.sign_bit().to_bool(), self.checked_sle(&result).unwrap()) {
(true, true) | (false, false) => None,
_ => Some(result),
}
}
/// Returns the result of `self - rhs` if the computation does not result in a signed integer overflow or underflow.
fn signed_sub_overflow_checked(&self, rhs: &Self) -> Option<Self> {
let result = self.clone().into_checked_sub(rhs).unwrap();
match (rhs.sign_bit().to_bool(), self.checked_sge(&result).unwrap()) {
(true, true) | (false, false) => None,
_ => Some(result),
}
}
/// Return the result of multiplying `self` with `rhs`
/// and a flag that is set to `true` if the multiplication resulted in a signed integer overflow or underflow.
///
/// Returns an error for bitvectors larger than 8 bytes,
/// since multiplication for them is not yet implemented in the [`apint`] crate.
fn signed_mult_with_overflow_flag(&self, rhs: &Self) -> Result<(Self, bool), Error> {
if self.is_zero() {
Ok((Bitvector::zero(self.width()), false))
} else if self.width().to_usize() > 64 {
// FIXME: Multiplication for bitvectors larger than 8 bytes is not yet implemented in the `apint` crate (version 0.2).
Err(anyhow!(
"Multiplication and division of integers larger than 8 bytes not yet implemented."
))
} else {
let result = self.clone().into_checked_mul(rhs).unwrap();
if result.clone().into_checked_sdiv(self).unwrap() != *rhs {
Ok((result, true))
} else {
Ok((result, false))
}
}
}
/// Return the size in bytes of the bitvector.
fn bytesize(&self) -> ByteSize {
self.width().into()
}
/// Resize `self` to the target byte size by either zero extending or truncating `self`.
fn into_resize_unsigned(self, size: ByteSize) -> Self {
if self.width() < size.into() {
self.into_zero_extend(size).unwrap()
} else {
self.into_truncate(size).unwrap()
}
}
/// Resize `self` to the target byte size by either sign extending or truncating `self`.
fn into_resize_signed(self, size: ByteSize) -> Self {
if self.width() < size.into() {
self.into_sign_extend(size).unwrap()
} else {
self.into_truncate(size).unwrap()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn overflow_checked_add_and_sub() {
let max = Bitvector::signed_max_value(ByteSize::new(8).into());
let min = Bitvector::signed_min_value(ByteSize::new(8).into());
assert_eq!(min.signed_add_overflow_checked(&min), None);
assert_eq!(
min.signed_add_overflow_checked(&max),
Some(-Bitvector::one(ByteSize::new(8).into()))
);
assert_eq!(
max.signed_add_overflow_checked(&min),
Some(-Bitvector::one(ByteSize::new(8).into()))
);
assert_eq!(max.signed_add_overflow_checked(&max), None);
assert_eq!(
min.signed_sub_overflow_checked(&min),
Some(Bitvector::zero(ByteSize::new(8).into()))
);
assert_eq!(min.signed_sub_overflow_checked(&max), None);
assert_eq!(max.signed_sub_overflow_checked(&min), None);
assert_eq!(
max.signed_sub_overflow_checked(&max),
Some(Bitvector::zero(ByteSize::new(8).into()))
);
}
}