1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
//! Property space of a taint analysis.
//!
//! Instances of the [`State`] type represent the taint state of memory and
//! registers at a certain location in the program.
use crate::abstract_domain::AbstractLocation;
use crate::abstract_domain::{
AbstractDomain, AbstractIdentifier, IntervalDomain, MemRegion, RegisterDomain, SizedDomain,
TryToBitvec,
};
use crate::analysis::graph::NodeIndex;
use crate::analysis::pointer_inference::Data as PiData;
use crate::analysis::vsa_results::VsaResult;
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::debug::ToJsonCompact;
use std::collections::BTreeMap;
use super::Taint;
mod memory_taint;
mod register_taint;
#[cfg(test)]
mod tests;
use memory_taint::MemoryTaint;
use register_taint::RegisterTaint;
/// The state object of the taint analysis representing all known tainted memory
/// and register values at a certain location within the program.
#[derive(Serialize, Deserialize, Debug, Eq, Clone)]
pub struct State {
/// The set of currently tainted registers.
register_taint: RegisterTaint,
/// The Taint contained in memory objects
memory_taint: MemoryTaint,
}
impl ToJsonCompact for State {
fn to_json_compact(&self) -> serde_json::Value {
let mut state_map = serde_json::Map::new();
let register_taint = self
.register_taint
.iter()
.map(|(reg, taint)| (reg.name.clone(), taint.to_json_compact()))
.collect();
let register_taint = serde_json::Value::Object(register_taint);
let memory_taint = self
.memory_taint
.iter()
.map(|(mem_id, mem_region)| (mem_id.to_string(), mem_region.to_json_compact()))
.collect();
let memory_taint = serde_json::Value::Object(memory_taint);
state_map.insert("registers".into(), register_taint);
state_map.insert("memory".into(), memory_taint);
serde_json::Value::Object(state_map)
}
}
impl PartialEq for State {
/// Two states are equal if the same values are tainted in both states.
fn eq(&self, other: &Self) -> bool {
self.register_taint == other.register_taint && self.memory_taint == other.memory_taint
}
}
impl AbstractDomain for State {
/// Merge two states.
///
/// Any value tainted in at least one input state is also tainted in the
/// merged state.
fn merge(&self, other: &Self) -> Self {
let mut new_state = self.clone();
new_state.merge_with(other);
new_state
}
fn merge_with(&mut self, other: &Self) -> &mut Self {
self.register_taint.merge_with(&other.register_taint);
self.memory_taint.merge_with(&other.memory_taint);
self
}
/// The state has no explicit Top element.
fn is_top(&self) -> bool {
false
}
}
impl State {
/// Returns an empty state.
pub fn new_empty() -> Self {
Self {
register_taint: RegisterTaint::new(),
memory_taint: MemoryTaint::new(),
}
}
/// Returns a state where only return values of the extern call are tainted.
pub fn new_return(
taint_source: &ExternSymbol,
vsa_result: &impl VsaResult<ValueDomain = PiData>,
return_node: NodeIndex,
) -> Self {
let mut state = Self {
register_taint: RegisterTaint::new(),
memory_taint: MemoryTaint::new(),
};
for return_arg in taint_source.return_values.iter() {
match return_arg {
Arg::Register { expr, .. } => {
for var in expr.input_vars() {
state
.register_taint
.insert(var.clone(), Taint::Tainted(var.size));
}
}
Arg::Stack { address, size, .. } => {
if let Some(address) = vsa_result.eval_at_node(return_node, address) {
state.save_taint_to_memory(&address, Taint::Tainted(*size));
}
}
}
}
state
}
/// Evaluate whether the result of the given expression is tainted in the
/// current state.
pub fn eval(&self, expression: &Expression) -> Taint {
match expression {
Expression::Const(_) => Taint::Top(expression.bytesize()),
Expression::Var(var) => {
if self.register_taint.get(var).is_some() {
Taint::Tainted(var.size)
} else {
Taint::Top(var.size)
}
}
Expression::BinOp { op, lhs, rhs } => {
let lhs_taint = self.eval(lhs);
let rhs_taint = self.eval(rhs);
lhs_taint.bin_op(*op, &rhs_taint)
}
Expression::UnOp { op, arg } => self.eval(arg).un_op(*op),
Expression::Unknown { size, .. } => Taint::Top(*size),
Expression::Cast { op, size, arg } => self.eval(arg).cast(*op, *size),
Expression::Subpiece {
low_byte,
size,
arg,
} => self.eval(arg).subpiece(*low_byte, *size),
}
}
/// Returns the taint of the value at the given address (with the given
/// size).
///
/// If the address may point to more than one location, then the taint state
/// of all possible locations is merged. Only exact locations are
/// considered, all other locations are treated as untainted.
pub fn load_taint_from_memory(&self, address: &PiData, size: ByteSize) -> Taint {
address
.get_relative_values()
.iter()
.filter_map(|(mem_id, offset)| {
if let (Some(mem_region), Ok(position)) =
(self.memory_taint.get(mem_id), offset.try_to_bitvec())
{
Some(mem_region.get(position.clone(), size))
} else {
None
}
})
.fold(Taint::Top(size), |acc, next| acc.merge(&next))
}
/// Mark the value at the given address with the given taint.
///
/// If the address may point to more than one object, we merge the taint
/// into all objects for which the corresponding offset is exact. Since we
/// merge, this will never remove any taint.
///
/// If the pointee object and offset are exactly known, we write the
/// `taint` to the object at the given offset. This may remove taint.
///
/// In all other cases we do nothing.
pub fn save_taint_to_memory(&mut self, address: &PiData, taint: Taint) {
if let Some((mem_id, offset)) = get_if_unique_target(address) {
if let Ok(position) = offset.try_to_bitvec() {
if let Some(mem_region) = self.memory_taint.get_mut(mem_id) {
mem_region.add(taint, position);
} else {
let mut mem_region = MemRegion::new(address.bytesize());
mem_region.add(taint, position);
self.memory_taint.insert(mem_id.clone(), mem_region);
}
}
} else {
for (mem_id, offset) in address.get_relative_values() {
if let Ok(position) = offset.try_to_bitvec() {
if let Some(mem_region) = self.memory_taint.get_mut(mem_id) {
let old_taint = mem_region.get(position.clone(), taint.bytesize());
mem_region.add(old_taint.merge(&taint), position.clone());
} else {
let mut mem_region = MemRegion::new(address.bytesize());
mem_region.add(taint, position.clone());
self.memory_taint.insert(mem_id.clone(), mem_region);
}
}
}
}
}
/// Remove all knowledge about taints contained in memory objects.
pub fn remove_all_memory_taints(&mut self) {
self.memory_taint = MemoryTaint::new();
}
/// Set the taint of a register.
pub fn set_register_taint(&mut self, register: &Variable, taint: Taint) {
if taint.is_top() {
self.register_taint.remove(register);
} else {
self.register_taint.insert(register.clone(), taint);
}
}
/// Returns the taint state of the given register.
pub fn get_register_taint(&self, register: &Variable) -> Taint {
self.register_taint
.get(register)
.copied()
.unwrap_or(Taint::Top(register.size))
}
/// Returns true if the memory object with the given ID contains a tainted
/// value.
pub fn check_mem_id_for_taint(&self, id: &AbstractIdentifier) -> bool {
self.memory_taint
.get(id)
.is_some_and(|mem_object| mem_object.values().any(|elem| elem.is_tainted()))
}
/// Check if the given address points to tainted memory.
///
/// Returns true iff the value at any of the exact memory locations that the
/// pointer may point to is tainted.
pub fn check_if_address_points_to_taint(&self, address: PiData) -> bool {
address
.get_relative_values()
.iter()
.any(|(target, offset)| {
if let (Some(mem_object), Ok(target_offset)) =
(self.memory_taint.get(target), offset.try_to_bitvec())
{
mem_object
.get_unsized(target_offset.clone())
.is_some_and(|taint| taint.is_tainted())
} else {
false
}
})
}
/// Check if any register in the given register list contains taint.
///
/// If `POINTER_TAINT` is selected, pointers to tainted memory are
/// considered to be tainted.
///
/// Returns `true` if taint was found and `false` if no taint was found.
fn check_register_list_for_taint<const POINTER_TAINT: bool>(
&self,
vsa_result: &impl VsaResult<ValueDomain = PiData>,
jmp_tid: &Tid,
register_list: &[Variable],
) -> bool {
register_list.iter().any(|register| {
// Check whether a register contains taint.
self.register_taint.get(register).is_some_and(|taint| { !taint.is_top()})
// Check whether some memory object referenced by a register may
// contain taint.
|| (
POINTER_TAINT
&& vsa_result
.eval_parameter_location_at_call(jmp_tid, &AbstractLocation::Register(register.clone()))
.is_some_and(|register_value| self.check_if_address_points_to_taint(register_value))
)
})
}
/// Check if a generic function call may contain tainted values in its
/// arguments.
///
/// If `POINTER_TAINT` is selected, pointers to tainted memory are
/// considered to be tainted.
///
/// Since we don't know the actual parameters of the call, we approximate
/// the parameters with all parameter registers of the calling convention of
/// the function or of the standard calling convention of the project.
///
/// In case no standard calling convention is found. We assume everything
/// may be parameters or referenced by parameters, i.e., we assume the
/// parameters of the call are tainted iff there is taint in the state.
pub fn check_generic_function_params_for_taint<const POINTER_TAINT: bool>(
&self,
vsa_result: &impl VsaResult<ValueDomain = PiData>,
call_tid: &Tid,
project: &Project,
calling_convention_hint: &Option<String>,
) -> bool {
if let Some(calling_conv) = project.get_specific_calling_convention(calling_convention_hint)
{
let mut all_parameters = calling_conv.integer_parameter_register.clone();
for float_param in calling_conv.float_parameter_register.iter() {
for var in float_param.input_vars() {
all_parameters.push(var.clone());
}
}
self.check_register_list_for_taint::<POINTER_TAINT>(
vsa_result,
call_tid,
&all_parameters,
)
} else {
!self.is_empty()
}
}
/// Check if the return registers may contain tainted values.
///
/// If `POINTER_TAINT` is selected, pointers to tainted memory are
/// considered to be tainted.
///
/// Since we don't know the actual return registers, we approximate them by
/// all return registers of the calling convention of the function or of the
/// standard calling convention of the project.
///
/// If no standard calling convention is found, we assume that everything
/// may be a return value or referenced by return values.
pub fn check_return_values_for_taint<const POINTER_TAINT: bool>(
&self,
vsa_result: &impl VsaResult<ValueDomain = PiData>,
return_tid: &Tid,
project: &Project,
calling_convention_hint: &Option<String>,
) -> bool {
if let Some(calling_conv) = project.get_specific_calling_convention(calling_convention_hint)
{
self.check_register_list_for_taint::<POINTER_TAINT>(
vsa_result,
return_tid,
&calling_conv.integer_return_register[..],
)
} else {
!self.is_empty()
}
}
/// Remove the taint from all registers not contained in the callee-saved
/// register list of the given calling convention.
pub fn remove_non_callee_saved_taint(&mut self, calling_conv: &CallingConvention) {
self.register_taint = self
.register_taint
.iter()
.filter_map(|(register, taint)| {
if calling_conv
.callee_saved_register
.iter()
.any(|callee_saved_reg| register == callee_saved_reg)
{
Some((register.clone(), *taint))
} else {
None
}
})
.collect();
}
/// Check parameters of a call to an extern symbol for taint.
///
/// If `POINTER_TAINT` is selected, we also return true if a pointer to
/// tainted memory is passed as an argument.
pub fn check_extern_parameters_for_taint<const POINTER_TAINT: bool>(
&self,
vsa_result: &impl VsaResult<ValueDomain = PiData>,
extern_symbol: &ExternSymbol,
call_tid: &Tid,
) -> bool {
extern_symbol.parameters.iter().any(|parameter| {
match parameter {
Arg::Register { expr, .. } => {
// Check for taint directly in value of parameter register.
self.eval(expr).is_tainted()
||
// Check if value in parameter register points to taint.
(POINTER_TAINT && vsa_result.eval_at_jmp(call_tid, expr).is_some_and(|register_value| {
self.check_if_address_points_to_taint(register_value)
}))
}
Arg::Stack { address, size, .. } => {
// Check for taint directly in the stack-based argument.
vsa_result.eval_at_jmp(call_tid, address).is_some_and(|address_value| {
self
.load_taint_from_memory(&address_value, *size)
.is_tainted()})
||
// Check if stack-based argument points to taint.
(POINTER_TAINT && vsa_result.eval_parameter_arg_at_call(call_tid, parameter).is_some_and(|stack_value| {
self.check_if_address_points_to_taint(stack_value)
}))
},
}
})
}
/// Check whether `self` contains any taint at all.
pub fn is_empty(&self) -> bool {
!self.has_memory_taint() && !self.has_register_taint()
}
/// Check whether there are any tainted registers in the state.
pub fn has_register_taint(&self) -> bool {
self.register_taint
.iter()
.any(|(_, taint)| matches!(*taint, Taint::Tainted(_)))
}
/// Check whether there is any tainted memory in the state.
pub fn has_memory_taint(&self) -> bool {
// NOTE: `self.memory_taint.is_empty()` would be incorrect since we may
// track memory objects that contain no taint, e.g., if we overwrite a
// tainted memory location with an untainted value.
self.memory_taint
.iter()
.flat_map(|(_, mem_region)| mem_region.iter())
.any(|(_, taint)| taint.is_tainted())
}
/// Merges the given `other` state into this state with renaming of abstract
/// identifiers.
///
/// The set of valid abstract identfiers (aIDs) is local to a given
/// function. When merging states across function boundaries it is necessary
/// to map aIDs into the set of valid aIDs in the target context before
/// performing the merging.
///
/// This function assumes that the target context is the one of `self` and
/// that `renaming_map` specifies how valid aIDs in the context of `other`
/// correspond to the aIDs of this context.
pub fn merge_with_renaming(
&mut self,
other: &Self,
renaming_map: Option<&BTreeMap<AbstractIdentifier, PiData>>,
) {
let Self {
register_taint: other_register_taint,
memory_taint: other_memory_taint,
} = other;
// Naive merging works for register taint.
self.register_taint.merge_with(other_register_taint);
let Some(renaming_map) = renaming_map else {
// Without a renaming rule we can not do anything meaningful with
// the memory objects of the other state, i.e., we are done here.
return;
};
for (other_aid, other_memory_object) in other_memory_taint.iter() {
let Some(value) = renaming_map.get(other_aid) else {
// The pointer inference decided that this object is not
// referenced in the context of `self`, so no need to merge it.
continue;
};
// There is more information in `value` that we could base our
// decision on; however,
// - we decide to ignore whether the `value` may be absolute in the
// context of `self`. This is not important for taint analyses.
// - in cases where it may be some unknown base + offset it is still
// worth handling the bases that we know about.
for (aid, offset_interval) in value.get_relative_values() {
let Ok(offset) = offset_interval.try_to_offset() else {
// The offset of the old memory object into the new one is
// not known exactly. At this point we could merge the old
// object at every possible offset (sound) or not merge at
// all (unsound).
//
// Depending on the analysis it will lead to more FP
// (CWE252) or FN (CWE476); on the upside, we have to track
// less state and are faster.
continue;
};
// Starts tracking the object if it does not exist.
self.memory_taint
.merge_memory_object_with_offset(aid, other_memory_object, offset);
}
}
}
/// Deconstructs a `State` into its register and memory taint maps.
pub fn into_mem_reg_taint(self) -> (RegisterTaint, MemoryTaint) {
(self.register_taint, self.memory_taint)
}
/// Constructs a `State` from register and memory taint maps.
pub fn from_mem_reg_taint(register_taint: RegisterTaint, memory_taint: MemoryTaint) -> Self {
Self {
register_taint,
memory_taint,
}
}
}
impl State {
/// Get a more compact json-representation of the state.
/// Intended for pretty printing, not useable for serialization/deserialization.
#[allow(dead_code)]
pub fn to_json_compact(&self) -> serde_json::Value {
use serde_json::*;
let register: Vec<(String, Value)> = self
.register_taint
.iter()
.map(|(var, data)| (var.name.clone(), json!(format!("{data}"))))
.collect();
let mut memory = Vec::new();
for (tid, mem_region) in self.memory_taint.iter() {
let mut elements = Vec::new();
for (offset, elem) in mem_region.iter() {
elements.push((offset.to_string(), json!(elem.to_string())));
}
memory.push((format!("{tid}"), Value::Object(Map::from_iter(elements))));
}
let state_map = vec![
(
"register".to_string(),
Value::Object(Map::from_iter(register)),
),
("memory".to_string(), Value::Object(Map::from_iter(memory))),
];
Value::Object(Map::from_iter(state_map))
}
}
/// Returns target ID and offset iff there is a single relative value.
///
/// In contrast to `DataDomain::get_if_unique_target` this function also
/// returns the pair when the `is_top` flag is set or the value may be absolute.
fn get_if_unique_target(address: &PiData) -> Option<(&AbstractIdentifier, &IntervalDomain)> {
let relative_values = address.get_relative_values();
if relative_values.len() == 1 {
Some(relative_values.iter().next().unwrap())
} else {
None
}
}