1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
//! Taint Analysis.
//!
//! This module provides general-purpose infrastructure for performing inter- or
//! intraprocedural Taint Analyses. In general, a Taint Analysis is a special
//! case of a forward "may" data flow analysis, where "may" means that merging
//! of flows is performed by taking unions, i.e., a value is tainted at a point
//! P iff there is *some* flow to P where it is tainted.
//!
//! A user defines the specific *instance* of a Taint Analyses that they want to
//! perform by implementing the [`TaintAnalysis`] trait. See its documentation
//! for further information.

use crate::abstract_domain::{AbstractDomain, HasTop, RegisterDomain, SizedDomain};
use crate::analysis::graph::Node as CfgNode;
use crate::analysis::pointer_inference::Data as PiData;
use crate::analysis::{
    forward_interprocedural_fixpoint,
    graph::{Graph as Cfg, HasCfg},
    vsa_results::{HasVsaResult, VsaResult},
};
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::debug::ToJsonCompact;
use std::convert::AsRef;
use std::fmt::Display;

pub mod state;

use state::State;

/// Trait representing the definition of a Taint Analysis.
///
/// Taken together, these callbacks define the transfer function of the Taint
/// Analysis. Individual callbacks define the transfer functions for the
/// different kinds of statements that can occur in the intermediate
/// representation.
///
/// The property space of this analysis is the [`State`] type, it represents the
/// taint information we have about a particular point in the program.
///
/// # Default Implementations
///
/// Many callbacks have default implementations that contain a behavior common
/// to many taint analyses. However, you almost certainly want to override some
/// of them to implement the custom logic of your analysis.
pub trait TaintAnalysis<'a>: HasCfg<'a> + HasVsaResult<PiData> + AsRef<Project> {
    /// Called when a transition function mapped the input state to the empty
    /// state.
    ///
    /// This function will be called every time a default transition function
    /// maps a (possibly empty) input state to the empty state. Its return value
    /// will override the `Some(empty_state)` return value of the transition
    /// function.
    ///
    /// # Default
    ///
    /// Just returns `None`. This is the desired behavior as long as it is
    /// impossible for transition functions to generate taint from an empty
    /// state.
    fn handle_empty_state_out(&self, _tid: &Tid) -> Option<State> {
        None
    }

    /// Update taint state on a function call without further target information.
    ///
    /// # Default
    ///
    /// Only remove taint from non-callee-saved registers.
    fn update_call_generic(
        &self,
        state: &State,
        call_tid: &Tid,
        calling_convention_hint: &Option<String>,
    ) -> Option<State> {
        let mut new_state = state.clone();

        if let Some(calling_conv) = <Self as AsRef<Project>>::as_ref(self)
            .get_specific_calling_convention(calling_convention_hint)
        {
            new_state.remove_non_callee_saved_taint(calling_conv);
        }

        if new_state.is_empty() {
            self.handle_empty_state_out(call_tid)
        } else {
            Some(new_state)
        }
    }

    /// Transition function for edges of type [`Call`].
    ///
    /// Corresponds to intra-program calls, i.e., the target function is
    /// defined in the same binary. Return `None` here to keep the
    /// analysis intraprocedural.
    ///
    /// [`Call`]: crate::analysis::graph::Edge::Call
    ///
    /// # Default
    ///
    /// Just returns `None` to keep the analysis intraprocedural.
    fn update_call(
        &self,
        _state: &State,
        _call: &Term<Jmp>,
        _target: &CfgNode,
        _calling_convention: &Option<String>,
    ) -> Option<State> {
        None
    }

    /// Transition function for calls to external functions.
    ///
    /// # Default
    ///
    /// Removes taint from non-callee-saved registers.
    fn update_extern_call(
        &self,
        state: &State,
        _call: &Term<Jmp>,
        project: &Project,
        extern_symbol: &ExternSymbol,
    ) -> Option<State> {
        let mut new_state = state.clone();

        new_state.remove_non_callee_saved_taint(project.get_calling_convention(extern_symbol));

        Some(new_state)
    }

    /// Transition function for edges of type [`ExternCallStub`].
    ///
    /// Corresponds to inter-program calls, i.e., calls to shared libraries.
    /// Currently, indirect calls also lead to edges of type [`ExternCallStub`].
    /// If you are only interested in handling calls to library functions
    /// consider implementing [`update_extern_call`] instead.
    ///
    /// [`update_extern_call`]: TaintAnalysis::update_extern_call
    /// [indirect calls]: crate::intermediate_representation::Jmp::CallInd
    /// [`ExternCallStub`]: crate::analysis::graph::Edge::ExternCallStub
    ///
    /// # Default
    ///
    /// Remove taint from non-callee-saved registers.
    fn update_call_stub(&self, state: &State, call: &Term<Jmp>) -> Option<State> {
        match &call.term {
            Jmp::Call { target, .. } => {
                let project = <Self as AsRef<Project>>::as_ref(self);
                let extern_symbol = project
                    .program
                    .term
                    .extern_symbols
                    .get(target)
                    .expect("TA: BUG: Unable to find extern symbol for call.");

                match self.update_extern_call(state, call, project, extern_symbol) {
                    Some(new_state) if new_state.is_empty() => {
                        self.handle_empty_state_out(&call.tid)
                    }
                    new_state_option => new_state_option,
                }
            }
            Jmp::CallInd { .. } => self.update_call_generic(state, &call.tid, &None),
            _ => panic!("TA: BUG: Malformed control flow graph encountered."),
        }
    }

    /// Returns the new taint state after a jump.
    ///
    /// # Default
    ///
    /// Clones the state before the jump.
    fn update_jump(
        &self,
        state: &State,
        jump: &Term<Jmp>,
        _untaken_conditional: Option<&Term<Jmp>>,
        _target: &Term<Blk>,
    ) -> Option<State> {
        if state.is_empty() {
            self.handle_empty_state_out(&jump.tid)
        } else {
            Some(state.clone())
        }
    }

    /// Corresponds to returns from calls to other functions within the program.
    ///
    /// Only invoked if we have information about the taint state in the called
    /// subroutine at the time it returns, i.e., we are in the first column of
    /// the table in [`update_return`]. The `state` parameter corresponds to
    /// the taint state at the return sites of the called subroutine.
    ///
    /// By implementing this method you can perform an interprocedural taint
    /// analysis:
    /// - If you return `Some(state)` you may influence the taint
    ///   state in the caller (see the documentation of [`update_return`] for
    ///   more information), by having it be [`merged`] into the state coming
    ///   from the call site.
    /// - If you return `None`, **no** information will be propagated through
    ///   this call. (This includes possible state information from the call
    ///   site!); thus, return the empty state if you want to keep the analysis
    ///   in the caller going.
    ///
    /// [`update_return`]: TaintAnalysis::update_return
    /// [`merged`]: State::merge
    ///
    /// # Default
    ///
    /// Returns an empty state, i.e., information is propagated through the call
    /// but the analysis stays intraprocedural.
    fn update_return_callee(
        &self,
        _state: &State,
        _call_term: &Term<Jmp>,
        _return_term: &Term<Jmp>,
        _calling_convention: &Option<String>,
    ) -> Option<State> {
        Some(State::new_empty())
    }

    /// Corresponds to returns from calls to other functions within the program.
    ///
    /// By implementing this method you can perform interprocedural taint
    /// analysis. See
    /// [`forward_interprocedural_fixpoint::Context::update_return`] for more
    /// information.
    ///
    /// # Default
    ///
    /// Depending on the availability of `state_before_call` and
    /// `state_before_return` the return value is computed according to the
    /// following scheme:
    ///
    /// ```table
    /// | state_before_call/    |                                                       |                     |
    /// |   state_before_return | Some                                                  | None                |
    /// |-----------------------|-------------------------------------------------------|---------------------|
    /// | Some                  | Some(update_call_generic.merge(update_return_callee)) | update_call_generic |
    /// |                       | IF both are Some ELSE None                            |                     |
    /// |-----------------------|-------------------------------------------------------|---------------------|
    /// | None                  | update_return_callee                                  | None                |
    /// ```
    fn update_return(
        &self,
        state_before_return: Option<&State>,
        state_before_call: Option<&State>,
        call_term: &Term<Jmp>,
        return_term: &Term<Jmp>,
        calling_convention: &Option<String>,
    ) -> Option<State> {
        let new_state = match (state_before_call, state_before_return) {
            (Some(state_before_call), Some(state_before_return)) => {
                let state_from_caller =
                    self.update_call_generic(state_before_call, &call_term.tid, calling_convention);
                let state_from_callee = self.update_return_callee(
                    state_before_return,
                    call_term,
                    return_term,
                    calling_convention,
                );

                match (state_from_caller, state_from_callee) {
                    (Some(mut state_caller), Some(state_callee)) => {
                        state_caller.merge_with_renaming(
                            &state_callee,
                            self.vsa_result().get_call_renaming_map(&call_term.tid),
                        );

                        Some(state_caller)
                    }
                    // If one implementation indicated that no information
                    // should be propagated by returning `None` we ignore what
                    // the other call returned.
                    _ => None,
                }
            }
            (Some(state_before_call), None) => {
                self.update_call_generic(state_before_call, &call_term.tid, calling_convention)
            }
            (None, Some(state_before_return)) => self
                .update_return_callee(
                    state_before_return,
                    call_term,
                    return_term,
                    calling_convention,
                )
                .map(|state_callee| {
                    let mut dummy_caller_state = State::new_empty();

                    dummy_caller_state.merge_with_renaming(
                        &state_callee,
                        self.vsa_result().get_call_renaming_map(&call_term.tid),
                    );

                    dummy_caller_state
                }),
            _ => None,
        };

        match new_state {
            Some(state) => {
                if state.is_empty() {
                    self.handle_empty_state_out(&return_term.tid)
                } else {
                    Some(state)
                }
            }
            None => None,
        }
    }

    /// Returns the new taint state after an assignment.
    ///
    /// # Default
    ///
    /// Taints the destination register if the value that is assigned to it is
    /// tainted.
    fn update_def_assign(
        &self,
        state: &State,
        _tid: &Tid,
        var: &Variable,
        value: &Expression,
    ) -> State {
        let mut new_state = state.clone();

        new_state.set_register_taint(var, state.eval(value));

        new_state
    }

    /// Returns the new taint state after a load from memory.
    ///
    /// # Default
    ///
    /// Taints the destination register if the memory location was tainted. In
    /// cases where the address is unknown the destination register is *not*
    /// tainted.
    fn update_def_load(
        &self,
        state: &State,
        tid: &Tid,
        var: &Variable,
        _address: &Expression,
    ) -> State {
        let mut new_state = state.clone();
        let vsa_result = self.vsa_result();

        let taint = if let Some(address_value) = vsa_result.eval_address_at_def(tid) {
            state.load_taint_from_memory(&address_value, var.size)
        } else {
            Taint::Top(var.size)
        };

        new_state.set_register_taint(var, taint);

        new_state
    }

    /// Returns the new taint state after a store to memory.
    ///
    /// # Default
    ///
    /// Taints the destination memory if the value that is being stored is
    /// tainted. If the destination is unknown, all memory taint is removed from
    /// the state.
    fn update_def_store(
        &self,
        state: &State,
        tid: &Tid,
        _address: &Expression,
        value: &Expression,
    ) -> State {
        let mut new_state = state.clone();
        let vsa_result = self.vsa_result();

        match vsa_result.eval_address_at_def(tid) {
            Some(address_value) => {
                let taint = state.eval(value);
                new_state.save_taint_to_memory(&address_value, taint);
            }
            None => {
                // We lost all knowledge about memory pointers.
                // We delete all memory taint to reduce false positives.
                new_state.remove_all_memory_taints();
            }
        }

        new_state
    }

    /// Returns the new taint state after processing a single Def term.
    ///
    /// Receives both, the taint state before processing the Def and after
    /// processing it. Has a chance to overrule the default processing in
    /// special cases, usually when this Def is a sink.
    ///
    /// # Default
    ///
    /// Just returns the proposed state.
    fn update_def_post(
        &self,
        _old_state: &State,
        new_state: State,
        def: &Term<Def>,
    ) -> Option<State> {
        if new_state.is_empty() {
            self.handle_empty_state_out(&def.tid)
        } else {
            Some(new_state)
        }
    }
}

impl<'a, T: TaintAnalysis<'a>> forward_interprocedural_fixpoint::Context<'a> for T {
    type Value = State;

    fn get_graph(&self) -> &Cfg<'a> {
        self.get_cfg()
    }

    fn merge(&self, state1: &Self::Value, state2: &Self::Value) -> Self::Value {
        state1.merge(state2)
    }

    fn specialize_conditional(
        &self,
        state: &Self::Value,
        _condition: &Expression,
        _block_before_condition: &Term<Blk>,
        _is_true: bool,
    ) -> Option<Self::Value> {
        Some(state.clone())
    }

    fn update_call(
        &self,
        state: &Self::Value,
        call: &Term<Jmp>,
        target: &CfgNode,
        calling_convention: &Option<String>,
    ) -> Option<Self::Value> {
        <Self as TaintAnalysis>::update_call(self, state, call, target, calling_convention)
    }

    fn update_call_stub(&self, state: &Self::Value, call: &Term<Jmp>) -> Option<Self::Value> {
        <Self as TaintAnalysis>::update_call_stub(self, state, call)
    }

    fn update_jump(
        &self,
        state: &Self::Value,
        jump: &Term<Jmp>,
        untaken_conditional: Option<&Term<Jmp>>,
        target: &Term<Blk>,
    ) -> Option<Self::Value> {
        <Self as TaintAnalysis>::update_jump(self, state, jump, untaken_conditional, target)
    }

    fn update_def(&self, state: &Self::Value, def: &Term<Def>) -> Option<Self::Value> {
        let new_state = match &def.term {
            Def::Assign { var, value } => self.update_def_assign(state, &def.tid, var, value),
            Def::Load { var, address } => self.update_def_load(state, &def.tid, var, address),
            Def::Store { address, value } => self.update_def_store(state, &def.tid, address, value),
        };

        self.update_def_post(state, new_state, def)
    }

    fn update_return(
        &self,
        state_before_return: Option<&State>,
        state_before_call: Option<&State>,
        call_term: &Term<Jmp>,
        return_term: &Term<Jmp>,
        calling_convention: &Option<String>,
    ) -> Option<State> {
        <Self as TaintAnalysis>::update_return(
            self,
            state_before_return,
            state_before_call,
            call_term,
            return_term,
            calling_convention,
        )
    }
}

/// An abstract domain representing a value that is either tainted or not.
///
/// Note that the [merge](Taint::merge)-function does not respect the partial
/// order that is implied by the naming scheme of the variants! In fact, the
/// whole analysis does not enforce any partial order for this domain. This
/// means that in theory the fixpoint computation may not actually converge to a
/// fixpoint, but in practice the analysis can make more precise decisions
/// whether a value should be tainted or not.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Taint {
    /// A tainted value of a particular bytesize.
    Tainted(ByteSize),
    /// An untainted value of a particular bytesize.
    Top(ByteSize),
}

impl Display for Taint {
    /// Print the value of a `Taint` object.
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Tainted(size) => write!(f, "Tainted:{size}"),
            Self::Top(size) => write!(f, "Top:{size}"),
        }
    }
}

impl AbstractDomain for Taint {
    /// The result of merging two `Taint` values is tainted if at least one input was tainted.
    fn merge(&self, other: &Self) -> Self {
        use Taint::*;
        match (self, other) {
            (Tainted(size), _) | (_, Tainted(size)) => Tainted(*size),
            _ => Top(self.bytesize()),
        }
    }

    /// Replaces `self` with `other` iff `self` is untainted and `other` is
    /// tainted.
    ///
    /// No change to `self` is required in the other cases.
    fn merge_with(&mut self, other: &Self) -> &mut Self {
        use Taint::*;

        if let (Top(_), Tainted(_)) = (&self, other) {
            *self = *other;
        };

        self
    }

    /// Checks whether the value is an untainted `Top`-value.
    fn is_top(&self) -> bool {
        matches!(self, Taint::Top(_))
    }
}

impl SizedDomain for Taint {
    /// The size in bytes of the `Taint` value.
    fn bytesize(&self) -> ByteSize {
        match self {
            Self::Tainted(size) | Self::Top(size) => *size,
        }
    }

    /// Get a new `Top`-value with the given bytesize.
    fn new_top(bytesize: ByteSize) -> Self {
        Self::Top(bytesize)
    }
}

impl HasTop for Taint {
    /// Get a new `Top`-value with the same bytesize as `self`.
    fn top(&self) -> Self {
        Self::Top(self.bytesize())
    }
}

impl RegisterDomain for Taint {
    /// The result of a binary operation is tainted if at least one input value
    /// was tainted.
    fn bin_op(&self, op: BinOpType, rhs: &Self) -> Self {
        match (self, rhs) {
            (Self::Tainted(_), _) | (_, Self::Tainted(_)) => {
                Self::Tainted(self.bin_op_bytesize(op, rhs))
            }
            _ => Self::Top(self.bin_op_bytesize(op, rhs)),
        }
    }

    /// The result of a unary operation is tainted if the input was tainted.
    fn un_op(&self, _op: UnOpType) -> Self {
        *self
    }

    /// A subpiece of a tainted value is again tainted.
    fn subpiece(&self, _low_byte: ByteSize, size: ByteSize) -> Self {
        if let Self::Tainted(_) = self {
            Self::Tainted(size)
        } else {
            Self::Top(size)
        }
    }

    /// The result of a cast operation is tainted if the input was tainted.
    fn cast(&self, _kind: CastOpType, width: ByteSize) -> Self {
        if let Self::Tainted(_) = self {
            Self::Tainted(width)
        } else {
            Self::Top(width)
        }
    }
}

impl ToJsonCompact for Taint {
    fn to_json_compact(&self) -> serde_json::Value {
        serde_json::json!(self.to_string())
    }
}

impl Taint {
    /// Checks whether the given value is in fact tainted.
    pub fn is_tainted(&self) -> bool {
        matches!(self, Taint::Tainted(_))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::analysis::pointer_inference::tests::MockVsaResult;
    use crate::{def, expr};

    #[test]
    fn abstract_domain() {
        let taint = Taint::Tainted(ByteSize::new(4));
        let top = Taint::Top(ByteSize::new(4));

        assert_eq!(taint.merge(&top), taint);
        assert_eq!(top.merge(&top), top);
        assert_eq!(taint.is_top(), false);
    }

    #[test]
    fn register_domain() {
        use crate::intermediate_representation::*;

        let taint = Taint::Tainted(ByteSize::new(4));
        let taint_8 = Taint::Tainted(ByteSize::new(8));
        let top = Taint::Top(ByteSize::new(4));

        assert_eq!(taint.bin_op(BinOpType::IntAdd, &top), taint);
        assert_eq!(top.bin_op(BinOpType::IntMult, &top), top);
        assert_eq!(taint.un_op(UnOpType::FloatFloor), taint);
        assert_eq!(taint.subpiece(ByteSize::new(0), ByteSize::new(4)), taint);
        assert_eq!(top.cast(CastOpType::IntZExt, ByteSize::new(4)), top);
        assert_eq!(taint.cast(CastOpType::LzCount, ByteSize::new(8)), taint_8);
        assert_eq!(taint.cast(CastOpType::LzCount, ByteSize::new(4)), taint);
    }

    struct TestContext<'a> {
        project: &'a Project,
        vsa_result: &'a MockVsaResult,
    }

    impl<'a> HasCfg<'a> for TestContext<'a> {
        fn get_cfg(&self) -> &Cfg<'a> {
            // Should not be called.
            panic!()
        }
    }

    impl<'a> HasVsaResult<PiData> for TestContext<'a> {
        fn vsa_result(&self) -> &impl VsaResult<ValueDomain = PiData> {
            self.vsa_result
        }
    }

    impl<'a> AsRef<Project> for TestContext<'a> {
        fn as_ref(&self) -> &Project {
            self.project
        }
    }

    impl<'a> TaintAnalysis<'a> for TestContext<'a> {
        fn update_call_stub(&self, state: &State, call: &Term<Jmp>) -> Option<State> {
            self.update_call_generic(state, &call.tid, &None)
        }
    }

    #[test]
    fn update_def() {
        let project = Project::mock_x64();
        let (state, pi_state) = State::mock_with_pi_state();
        let address_at_def = Some(pi_state.eval(&expr!("RSP:8")));
        let pi_results = MockVsaResult::new(pi_state, address_at_def, None, None);
        let context = TestContext {
            project: &project,
            vsa_result: &pi_results,
        };

        // Test that taint state is updated correctly on assignments.
        let assign_def = def!["def: RCX:8 = RAX:8"];
        let result = <TestContext as forward_interprocedural_fixpoint::Context>::update_def(
            &context,
            &state,
            &assign_def,
        )
        .unwrap();
        assert!(result.eval(&expr!("RCX:8")).is_tainted());
        assert!(result.eval(&expr!("RSP:8")).is_top());

        // Test that taint state is updated correctly on loads.
        let load_def = def!["def: RCX:8 := Load from RSP:8"];
        let result = <TestContext as forward_interprocedural_fixpoint::Context>::update_def(
            &context, &state, &load_def,
        )
        .unwrap();
        assert!(result.eval(&expr!("RCX:8")).is_tainted());
        assert!(result.eval(&expr!("RSP:8")).is_top());

        // Test that taint state is updated correctly on stores.
        let store_def = def!["def: Store at RSP:8 := RCX:8"];
        let result = <TestContext as forward_interprocedural_fixpoint::Context>::update_def(
            &context, &state, &store_def,
        )
        .unwrap();
        let result = <TestContext as forward_interprocedural_fixpoint::Context>::update_def(
            &context, &result, &load_def,
        )
        .unwrap();
        assert!(result.eval(&expr!("RCX:8")).is_top());
    }
}