1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
use super::object::AbstractObject;
use super::object_list::AbstractObjectList;
use super::Data;
use crate::abstract_domain::*;
use crate::analysis::function_signature::AccessPattern;
use crate::analysis::function_signature::FunctionSignature;
use crate::intermediate_representation::*;
use crate::prelude::*;
use std::collections::HashSet;
use std::collections::{BTreeMap, BTreeSet};
use std::sync::Arc;

mod access_handling;
mod id_manipulation;
mod value_specialization;

/// Contains all information known about the state of a program at a specific point of time.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct State {
    /// Maps a register variable to the data known about its content.
    /// A variable not contained in the map has value `Data::Top(..)`, i.e. nothing is known about its content.
    register: DomainMap<Variable, Data, MergeTopStrategy>,
    /// The list of all known memory objects.
    pub memory: AbstractObjectList,
    /// The abstract identifier of the current stack frame.
    /// It points to the base of the stack frame, i.e. only negative offsets point into the current stack frame.
    pub stack_id: AbstractIdentifier,
    /// A list of constants that are assumed to be addresses of global variables accessed by this function.
    /// Used to replace constants by relative values pointing to the global memory object.
    known_global_addresses: Arc<BTreeSet<u64>>,
}

impl State {
    /// Create a new state that contains one memory object corresponding to the stack
    /// and one memory object corresponding to global memory.
    ///
    /// The stack offset will be set to zero.
    pub fn new(
        stack_register: &Variable,
        function_tid: Tid,
        global_addresses: BTreeSet<u64>,
    ) -> State {
        let stack_id = AbstractIdentifier::new(
            function_tid,
            AbstractLocation::from_var(stack_register).unwrap(),
        );
        let mut register = DomainMap::from(BTreeMap::new());
        register.insert(
            stack_register.clone(),
            Data::from_target(
                stack_id.clone(),
                Bitvector::zero(apint::BitWidth::from(stack_register.size)).into(),
            ),
        );
        State {
            register,
            memory: AbstractObjectList::from_stack_id(stack_id.clone(), stack_register.size),
            stack_id,
            known_global_addresses: Arc::new(global_addresses),
        }
    }

    /// Create a new state from a function signature.
    ///
    /// The created state contains one memory object for the stack frame of the function
    /// and one memory object for each parameter that is dereferenced by the function
    /// (according to the function signature).
    pub fn from_fn_sig(
        fn_sig: &FunctionSignature,
        stack_register: &Variable,
        function_tid: Tid,
    ) -> State {
        let global_addresses = fn_sig
            .global_parameters
            .keys()
            .map(|location| match location {
                AbstractLocation::GlobalAddress { address, .. }
                | AbstractLocation::GlobalPointer(address, _) => *address,
                _ => panic!("Unexpected non-global parameter"),
            })
            .collect();
        let mock_global_memory = RuntimeMemoryImage::empty(true);
        let mut state = State::new(stack_register, function_tid.clone(), global_addresses);
        // Set parameter values and create parameter memory objects.
        for params in sort_params_by_recursion_depth(&fn_sig.parameters).values() {
            for (param_location, access_pattern) in params {
                state.add_param(param_location, access_pattern, &mock_global_memory);
            }
        }
        for (recursion_depth, params) in sort_params_by_recursion_depth(&fn_sig.global_parameters) {
            if recursion_depth > 0 {
                for (param_location, access_pattern) in params {
                    state.add_param(param_location, access_pattern, &mock_global_memory);
                }
            }
        }
        state
    }

    /// Add the given parameter to the function start state represented by `self`:
    /// For the given parameter location, add a parameter object if it was dereferenced (according to the access pattern)
    /// and write the pointer to the parameter object to the corresponding existing memory object of `self`.
    ///
    /// This function assumes that the parent memory object of `param` already exists if `param` is a nested parameter.
    fn add_param(
        &mut self,
        param: &AbstractLocation,
        access_pattern: &AccessPattern,
        global_memory: &RuntimeMemoryImage,
    ) {
        let param_id = AbstractIdentifier::new(self.stack_id.get_tid().clone(), param.clone());
        if !matches!(param, AbstractLocation::GlobalAddress { .. })
            && access_pattern.is_dereferenced()
        {
            self.memory
                .add_abstract_object(param_id.clone(), self.stack_id.bytesize(), None);
        }
        match param {
            AbstractLocation::Register(var) => {
                self.set_register(
                    var,
                    Data::from_target(param_id, Bitvector::zero(param.bytesize().into()).into()),
                );
            }
            AbstractLocation::Pointer(_, _) => {
                let (parent_location, offset) =
                    param.get_parent_location(self.stack_id.bytesize()).unwrap();
                let parent_id =
                    AbstractIdentifier::new(self.stack_id.get_tid().clone(), parent_location);
                self.store_value(
                    &Data::from_target(
                        parent_id,
                        Bitvector::from_i64(offset)
                            .into_resize_signed(self.stack_id.bytesize())
                            .into(),
                    ),
                    &Data::from_target(
                        param_id.clone(),
                        Bitvector::zero(param_id.bytesize().into()).into(),
                    ),
                    global_memory,
                )
                .unwrap();
            }
            AbstractLocation::GlobalAddress { .. } => (),
            AbstractLocation::GlobalPointer(_, _) => {
                let (parent_location, offset) =
                    param.get_parent_location(self.stack_id.bytesize()).unwrap();
                if let AbstractLocation::GlobalAddress { address, size: _ } = parent_location {
                    let parent_id = self.get_global_mem_id();
                    self.store_value(
                        &Data::from_target(
                            parent_id,
                            Bitvector::from_u64(address.wrapping_add(offset as u64))
                                .into_resize_signed(self.stack_id.bytesize())
                                .into(),
                        ),
                        &Data::from_target(
                            param_id.clone(),
                            Bitvector::zero(param_id.bytesize().into()).into(),
                        ),
                        global_memory,
                    )
                    .unwrap();
                } else {
                    let parent_id =
                        AbstractIdentifier::new(self.stack_id.get_tid().clone(), parent_location);
                    self.store_value(
                        &Data::from_target(
                            parent_id,
                            Bitvector::from_i64(offset)
                                .into_resize_signed(self.stack_id.bytesize())
                                .into(),
                        ),
                        &Data::from_target(
                            param_id.clone(),
                            Bitvector::zero(param_id.bytesize().into()).into(),
                        ),
                        global_memory,
                    )
                    .unwrap();
                }
            }
        }
    }

    /// Set the MIPS link register `t9` to the address of the callee TID.
    ///
    /// According to the System V ABI for MIPS the caller has to save the callee address in register `t9`
    /// on a function call to position-independent code.
    /// In MIPS this value is used to compute the addresses of some global variables,
    /// since MIPS does not use program-counter-relative access instructions like other instruction set architectures do.
    ///
    /// This function sets `t9` to the correct value.
    /// Returns an error if the callee address could not be parsed (e.g. for `UNKNOWN` addresses).
    pub fn set_mips_link_register(
        &mut self,
        callee_tid: &Tid,
        generic_pointer_size: ByteSize,
    ) -> Result<(), Error> {
        let link_register = Variable {
            name: "t9".into(),
            size: generic_pointer_size,
            is_temp: false,
        };
        let address = Bitvector::from_u64(u64::from_str_radix(&callee_tid.address, 16)?)
            .into_resize_unsigned(generic_pointer_size);
        self.set_register(&link_register, address.into());
        Ok(())
    }

    /// Remove all objects and registers from the state whose contents will not be used after returning to a caller.
    ///
    /// All remaining memory objects after the minimization are reachable in the caller
    /// either via a parameter object that may have been mutated in the call
    /// or via a return register.
    pub fn minimize_before_return_instruction(
        &mut self,
        fn_sig: &FunctionSignature,
        cconv: &CallingConvention,
    ) {
        self.clear_non_return_register(cconv);
        self.remove_immutable_parameter_objects(fn_sig);
        self.memory.remove(&self.stack_id);
        self.remove_unreferenced_objects();
    }

    /// Remove all parameter objects (including global parameter objects) that are not marked as mutably accessed.
    /// Used to minimize state before a return instruction.
    fn remove_immutable_parameter_objects(&mut self, fn_sig: &FunctionSignature) {
        let current_fn_tid = self.get_fn_tid().clone();
        self.memory.retain(|object_id, _object| {
            if *object_id.get_tid() == current_fn_tid && object_id.get_path_hints().is_empty() {
                if let Some(access_pattern) = fn_sig.parameters.get(object_id.get_location()) {
                    if !access_pattern.is_mutably_dereferenced() {
                        return false;
                    }
                }
                if let Some(access_pattern) = fn_sig.global_parameters.get(object_id.get_location())
                {
                    if !access_pattern.is_mutably_dereferenced() {
                        return false;
                    }
                }
            }
            true
        });
    }

    /// Clear all non-return registers from the state, including all virtual registers.
    /// This function is used to minimize the state before a return instruction.
    fn clear_non_return_register(&mut self, cconv: &CallingConvention) {
        let return_register: HashSet<Variable> = cconv
            .get_all_return_register()
            .into_iter()
            .cloned()
            .collect();
        self.register
            .retain(|var, _value| return_register.contains(var));
    }

    /// Try to determine unique pointer locations for non-parameter memory objects.
    /// When successful, merge all referenced non-parameter objects for that location
    /// and replace the pointer with a pointer to the merged object.
    ///
    /// The merged objects get new abstract IDs generated from the call TID and their abstract location in the state.
    ///
    /// This function leaves pointers to parameter objects as is,
    /// while pointers to non-parameter objects, that were not merged (e.g. due to pointers being not unique) are replaced with `Top`.
    pub fn merge_mem_objects_with_unique_abstract_location(&mut self, call_tid: &Tid) {
        let mut location_to_data_map = self.map_abstract_locations_to_pointer_data(call_tid);
        self.filter_location_to_pointer_data_map(&mut location_to_data_map);
        let location_to_object_map =
            self.generate_target_objects_for_new_locations(&location_to_data_map);
        self.replace_unified_mem_objects(location_to_object_map);
        self.replace_ids_to_non_parameter_objects(&location_to_data_map);
        self.insert_pointers_to_unified_objects(&location_to_data_map, call_tid);
    }

    /// Remove all memory objects corresponding to non-parameter IDs.
    /// Afterwards, add the memory objects in the location to object map to the state.
    fn replace_unified_mem_objects(
        &mut self,
        location_to_object_map: BTreeMap<AbstractIdentifier, AbstractObject>,
    ) {
        let current_fn_tid = self.get_fn_tid().clone();
        self.memory.retain(|object_id, _| {
            *object_id.get_tid() == current_fn_tid && object_id.get_path_hints().is_empty()
        });
        for (id, object) in location_to_object_map {
            self.memory.insert(id, object);
        }
    }

    /// Clear all non-callee-saved registers from the state.
    /// This automatically also removes all virtual registers.
    /// The parameter is a list of callee-saved register names.
    pub fn clear_non_callee_saved_register(&mut self, callee_saved_register: &[Variable]) {
        let register = callee_saved_register
            .iter()
            .filter_map(|var| {
                let value = self.get_register(var);
                if value.is_top() {
                    None
                } else {
                    Some((var.clone(), value))
                }
            })
            .collect();
        self.register = register;
    }

    /// Mark those parameter values of an extern function call, that are passed on the stack,
    /// as unknown data (since the function may modify them).
    pub fn clear_stack_parameter(
        &mut self,
        extern_call: &ExternSymbol,
        global_memory: &RuntimeMemoryImage,
    ) -> Result<(), Error> {
        let mut result_log = Ok(());
        for arg in &extern_call.parameters {
            match arg {
                Arg::Register { .. } => (),
                Arg::Stack { address, size, .. } => {
                    let data_top = Data::new_top(*size);
                    if let Err(err) = self.write_to_address(address, &data_top, global_memory) {
                        result_log = Err(err);
                    }
                }
            }
        }
        // We only return the last error encountered.
        result_log
    }

    /// Remove all objects that cannot longer be reached by any known pointer.
    /// This does not remove objects, where some caller may still know a pointer to the object.
    ///
    /// The function uses an underapproximation of all possible pointer targets contained in a memory object.
    /// This keeps the number of tracked objects reasonably small.
    pub fn remove_unreferenced_objects(&mut self) {
        // get all referenced IDs from registers
        let mut referenced_ids = BTreeSet::new();
        for (_reg_name, data) in self.register.iter() {
            referenced_ids.extend(data.referenced_ids().cloned());
        }
        // get all IDs of parameter objects and the current stack frame
        for id in self.memory.get_all_object_ids() {
            if id.get_tid() == self.stack_id.get_tid() && id.get_path_hints().is_empty() {
                referenced_ids.insert(id);
            }
        }
        // get the global memory ID, as it is always reachable
        referenced_ids.insert(self.get_global_mem_id());
        // Add IDs that are recursively reachable through the known IDs.
        referenced_ids = self.add_directly_reachable_ids_to_id_set(referenced_ids);
        // remove unreferenced objects
        self.memory.remove_unused_objects(&referenced_ids);
    }

    /// Remove all knowledge about the contents of non-callee-saved registers from the state.
    pub fn remove_non_callee_saved_register(&mut self, cconv: &CallingConvention) {
        let mut callee_saved_register = BTreeMap::new();
        for var in &cconv.callee_saved_register {
            if let Some(value) = self.register.get(var) {
                callee_saved_register.insert(var.clone(), value.clone());
            }
        }
        self.register = callee_saved_register.into();
    }

    /// Get the Tid of the function that this state belongs to.
    pub fn get_fn_tid(&self) -> &Tid {
        self.stack_id.get_tid()
    }

    /// Get the abstract ID of the global memory object corresponding to this function.
    pub fn get_global_mem_id(&self) -> AbstractIdentifier {
        AbstractIdentifier::new(
            self.stack_id.get_tid().clone(),
            AbstractLocation::GlobalAddress {
                address: 0,
                size: self.stack_id.bytesize(),
            },
        )
    }
}

impl AbstractDomain for State {
    /// Merge two states
    fn merge(&self, other: &Self) -> Self {
        assert_eq!(self.stack_id, other.stack_id);
        let merged_memory_objects = self.memory.merge(&other.memory);
        State {
            register: self.register.merge(&other.register),
            memory: merged_memory_objects,
            stack_id: self.stack_id.clone(),
            known_global_addresses: self.known_global_addresses.clone(),
        }
    }

    /// A state has no *Top* element
    fn is_top(&self) -> bool {
        false
    }
}

impl State {
    /// Get a more compact json-representation of the state.
    /// Intended for pretty printing, not useable for serialization/deserialization.
    pub fn to_json_compact(&self) -> serde_json::Value {
        use serde_json::*;
        let mut state_map = Map::new();
        let register = self
            .register
            .iter()
            .map(|(var, data)| (var.name.clone(), data.to_json_compact()))
            .collect();
        let register = Value::Object(register);
        state_map.insert("register".into(), register);
        state_map.insert("memory".into(), self.memory.to_json_compact());
        state_map.insert(
            "stack_id".into(),
            Value::String(format!("{}", self.stack_id)),
        );

        Value::Object(state_map)
    }
}

/// Sort parameters by recursion depth.
/// Helper function when one has to iterate over parameters in order of their recursion depth.
fn sort_params_by_recursion_depth(
    params: &BTreeMap<AbstractLocation, AccessPattern>,
) -> BTreeMap<u64, BTreeMap<&AbstractLocation, &AccessPattern>> {
    let mut sorted_params = BTreeMap::new();
    for (param, access_pattern) in params {
        let recursion_depth = param.recursion_depth();
        let bucket = sorted_params
            .entry(recursion_depth)
            .or_insert(BTreeMap::new());
        bucket.insert(param, access_pattern);
    }
    sorted_params
}

#[cfg(test)]
mod tests;