1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
use super::object::AbstractObject;
use super::object_list::AbstractObjectList;
use super::Data;
use crate::abstract_domain::*;
use crate::analysis::function_signature::AccessPattern;
use crate::analysis::function_signature::FunctionSignature;
use crate::intermediate_representation::*;
use crate::prelude::*;
use std::collections::HashSet;
use std::collections::{BTreeMap, BTreeSet};
use std::sync::Arc;
mod access_handling;
mod id_manipulation;
mod value_specialization;
/// Contains all information known about the state of a program at a specific point of time.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct State {
/// Maps a register variable to the data known about its content.
/// A variable not contained in the map has value `Data::Top(..)`, i.e. nothing is known about its content.
register: DomainMap<Variable, Data, MergeTopStrategy>,
/// The list of all known memory objects.
pub memory: AbstractObjectList,
/// The abstract identifier of the current stack frame.
/// It points to the base of the stack frame, i.e. only negative offsets point into the current stack frame.
pub stack_id: AbstractIdentifier,
/// A list of constants that are assumed to be addresses of global variables accessed by this function.
/// Used to replace constants by relative values pointing to the global memory object.
known_global_addresses: Arc<BTreeSet<u64>>,
}
impl State {
/// Create a new state that contains one memory object corresponding to the stack
/// and one memory object corresponding to global memory.
///
/// The stack offset will be set to zero.
pub fn new(
stack_register: &Variable,
function_tid: Tid,
global_addresses: BTreeSet<u64>,
) -> State {
let stack_id = AbstractIdentifier::new(
function_tid,
AbstractLocation::from_var(stack_register).unwrap(),
);
let mut register = DomainMap::from(BTreeMap::new());
register.insert(
stack_register.clone(),
Data::from_target(
stack_id.clone(),
Bitvector::zero(apint::BitWidth::from(stack_register.size)).into(),
),
);
State {
register,
memory: AbstractObjectList::from_stack_id(stack_id.clone(), stack_register.size),
stack_id,
known_global_addresses: Arc::new(global_addresses),
}
}
/// Create a new state from a function signature.
///
/// The created state contains one memory object for the stack frame of the function
/// and one memory object for each parameter that is dereferenced by the function
/// (according to the function signature).
pub fn from_fn_sig(
fn_sig: &FunctionSignature,
stack_register: &Variable,
function_tid: Tid,
) -> State {
let global_addresses = fn_sig
.global_parameters
.keys()
.map(|location| match location {
AbstractLocation::GlobalAddress { address, .. }
| AbstractLocation::GlobalPointer(address, _) => *address,
_ => panic!("Unexpected non-global parameter"),
})
.collect();
let mock_global_memory = RuntimeMemoryImage::empty(true);
let mut state = State::new(stack_register, function_tid.clone(), global_addresses);
// Set parameter values and create parameter memory objects.
for params in sort_params_by_recursion_depth(&fn_sig.parameters).values() {
for (param_location, access_pattern) in params {
state.add_param(param_location, access_pattern, &mock_global_memory);
}
}
for (recursion_depth, params) in sort_params_by_recursion_depth(&fn_sig.global_parameters) {
if recursion_depth > 0 {
for (param_location, access_pattern) in params {
state.add_param(param_location, access_pattern, &mock_global_memory);
}
}
}
state
}
/// Add the given parameter to the function start state represented by `self`:
/// For the given parameter location, add a parameter object if it was dereferenced (according to the access pattern)
/// and write the pointer to the parameter object to the corresponding existing memory object of `self`.
///
/// This function assumes that the parent memory object of `param` already exists if `param` is a nested parameter.
fn add_param(
&mut self,
param: &AbstractLocation,
access_pattern: &AccessPattern,
global_memory: &RuntimeMemoryImage,
) {
let param_id = AbstractIdentifier::new(self.stack_id.get_tid().clone(), param.clone());
if !matches!(param, AbstractLocation::GlobalAddress { .. })
&& access_pattern.is_dereferenced()
{
self.memory
.add_abstract_object(param_id.clone(), self.stack_id.bytesize(), None);
}
match param {
AbstractLocation::Register(var) => {
self.set_register(
var,
Data::from_target(param_id, Bitvector::zero(param.bytesize().into()).into()),
);
}
AbstractLocation::Pointer(_, _) => {
let (parent_location, offset) =
param.get_parent_location(self.stack_id.bytesize()).unwrap();
let parent_id =
AbstractIdentifier::new(self.stack_id.get_tid().clone(), parent_location);
self.store_value(
&Data::from_target(
parent_id,
Bitvector::from_i64(offset)
.into_resize_signed(self.stack_id.bytesize())
.into(),
),
&Data::from_target(
param_id.clone(),
Bitvector::zero(param_id.bytesize().into()).into(),
),
global_memory,
)
.unwrap();
}
AbstractLocation::GlobalAddress { .. } => (),
AbstractLocation::GlobalPointer(_, _) => {
let (parent_location, offset) =
param.get_parent_location(self.stack_id.bytesize()).unwrap();
if let AbstractLocation::GlobalAddress { address, size: _ } = parent_location {
let parent_id = self.get_global_mem_id();
self.store_value(
&Data::from_target(
parent_id,
Bitvector::from_u64(address.wrapping_add(offset as u64))
.into_resize_signed(self.stack_id.bytesize())
.into(),
),
&Data::from_target(
param_id.clone(),
Bitvector::zero(param_id.bytesize().into()).into(),
),
global_memory,
)
.unwrap();
} else {
let parent_id =
AbstractIdentifier::new(self.stack_id.get_tid().clone(), parent_location);
self.store_value(
&Data::from_target(
parent_id,
Bitvector::from_i64(offset)
.into_resize_signed(self.stack_id.bytesize())
.into(),
),
&Data::from_target(
param_id.clone(),
Bitvector::zero(param_id.bytesize().into()).into(),
),
global_memory,
)
.unwrap();
}
}
}
}
/// Set the MIPS link register `t9` to the address of the callee TID.
///
/// According to the System V ABI for MIPS the caller has to save the callee address in register `t9`
/// on a function call to position-independent code.
/// In MIPS this value is used to compute the addresses of some global variables,
/// since MIPS does not use program-counter-relative access instructions like other instruction set architectures do.
///
/// This function sets `t9` to the correct value.
/// Returns an error if the callee address could not be parsed (e.g. for `UNKNOWN` addresses).
pub fn set_mips_link_register(
&mut self,
callee_tid: &Tid,
generic_pointer_size: ByteSize,
) -> Result<(), Error> {
let link_register = Variable {
name: "t9".into(),
size: generic_pointer_size,
is_temp: false,
};
let address = Bitvector::from_u64(u64::from_str_radix(&callee_tid.address, 16)?)
.into_resize_unsigned(generic_pointer_size);
self.set_register(&link_register, address.into());
Ok(())
}
/// Remove all objects and registers from the state whose contents will not be used after returning to a caller.
///
/// All remaining memory objects after the minimization are reachable in the caller
/// either via a parameter object that may have been mutated in the call
/// or via a return register.
pub fn minimize_before_return_instruction(
&mut self,
fn_sig: &FunctionSignature,
cconv: &CallingConvention,
) {
self.clear_non_return_register(cconv);
self.remove_immutable_parameter_objects(fn_sig);
self.memory.remove(&self.stack_id);
self.remove_unreferenced_objects();
}
/// Remove all parameter objects (including global parameter objects) that are not marked as mutably accessed.
/// Used to minimize state before a return instruction.
fn remove_immutable_parameter_objects(&mut self, fn_sig: &FunctionSignature) {
let current_fn_tid = self.get_fn_tid().clone();
self.memory.retain(|object_id, _object| {
if *object_id.get_tid() == current_fn_tid && object_id.get_path_hints().is_empty() {
if let Some(access_pattern) = fn_sig.parameters.get(object_id.get_location()) {
if !access_pattern.is_mutably_dereferenced() {
return false;
}
}
if let Some(access_pattern) = fn_sig.global_parameters.get(object_id.get_location())
{
if !access_pattern.is_mutably_dereferenced() {
return false;
}
}
}
true
});
}
/// Clear all non-return registers from the state, including all virtual registers.
/// This function is used to minimize the state before a return instruction.
fn clear_non_return_register(&mut self, cconv: &CallingConvention) {
let return_register: HashSet<Variable> = cconv
.get_all_return_register()
.into_iter()
.cloned()
.collect();
self.register
.retain(|var, _value| return_register.contains(var));
}
/// Try to determine unique pointer locations for non-parameter memory objects.
/// When successful, merge all referenced non-parameter objects for that location
/// and replace the pointer with a pointer to the merged object.
///
/// The merged objects get new abstract IDs generated from the call TID and their abstract location in the state.
///
/// This function leaves pointers to parameter objects as is,
/// while pointers to non-parameter objects, that were not merged (e.g. due to pointers being not unique) are replaced with `Top`.
pub fn merge_mem_objects_with_unique_abstract_location(&mut self, call_tid: &Tid) {
let mut location_to_data_map = self.map_abstract_locations_to_pointer_data(call_tid);
self.filter_location_to_pointer_data_map(&mut location_to_data_map);
let location_to_object_map =
self.generate_target_objects_for_new_locations(&location_to_data_map);
self.replace_unified_mem_objects(location_to_object_map);
self.replace_ids_to_non_parameter_objects(&location_to_data_map);
self.insert_pointers_to_unified_objects(&location_to_data_map, call_tid);
}
/// Remove all memory objects corresponding to non-parameter IDs.
/// Afterwards, add the memory objects in the location to object map to the state.
fn replace_unified_mem_objects(
&mut self,
location_to_object_map: BTreeMap<AbstractIdentifier, AbstractObject>,
) {
let current_fn_tid = self.get_fn_tid().clone();
self.memory.retain(|object_id, _| {
*object_id.get_tid() == current_fn_tid && object_id.get_path_hints().is_empty()
});
for (id, object) in location_to_object_map {
self.memory.insert(id, object);
}
}
/// Clear all non-callee-saved registers from the state.
/// This automatically also removes all virtual registers.
/// The parameter is a list of callee-saved register names.
pub fn clear_non_callee_saved_register(&mut self, callee_saved_register: &[Variable]) {
let register = callee_saved_register
.iter()
.filter_map(|var| {
let value = self.get_register(var);
if value.is_top() {
None
} else {
Some((var.clone(), value))
}
})
.collect();
self.register = register;
}
/// Mark those parameter values of an extern function call, that are passed on the stack,
/// as unknown data (since the function may modify them).
pub fn clear_stack_parameter(
&mut self,
extern_call: &ExternSymbol,
global_memory: &RuntimeMemoryImage,
) -> Result<(), Error> {
let mut result_log = Ok(());
for arg in &extern_call.parameters {
match arg {
Arg::Register { .. } => (),
Arg::Stack { address, size, .. } => {
let data_top = Data::new_top(*size);
if let Err(err) = self.write_to_address(address, &data_top, global_memory) {
result_log = Err(err);
}
}
}
}
// We only return the last error encountered.
result_log
}
/// Remove all objects that cannot longer be reached by any known pointer.
/// This does not remove objects, where some caller may still know a pointer to the object.
///
/// The function uses an underapproximation of all possible pointer targets contained in a memory object.
/// This keeps the number of tracked objects reasonably small.
pub fn remove_unreferenced_objects(&mut self) {
// get all referenced IDs from registers
let mut referenced_ids = BTreeSet::new();
for (_reg_name, data) in self.register.iter() {
referenced_ids.extend(data.referenced_ids().cloned());
}
// get all IDs of parameter objects and the current stack frame
for id in self.memory.get_all_object_ids() {
if id.get_tid() == self.stack_id.get_tid() && id.get_path_hints().is_empty() {
referenced_ids.insert(id);
}
}
// get the global memory ID, as it is always reachable
referenced_ids.insert(self.get_global_mem_id());
// Add IDs that are recursively reachable through the known IDs.
referenced_ids = self.add_directly_reachable_ids_to_id_set(referenced_ids);
// remove unreferenced objects
self.memory.remove_unused_objects(&referenced_ids);
}
/// Remove all knowledge about the contents of non-callee-saved registers from the state.
pub fn remove_non_callee_saved_register(&mut self, cconv: &CallingConvention) {
let mut callee_saved_register = BTreeMap::new();
for var in &cconv.callee_saved_register {
if let Some(value) = self.register.get(var) {
callee_saved_register.insert(var.clone(), value.clone());
}
}
self.register = callee_saved_register.into();
}
/// Get the Tid of the function that this state belongs to.
pub fn get_fn_tid(&self) -> &Tid {
self.stack_id.get_tid()
}
/// Get the abstract ID of the global memory object corresponding to this function.
pub fn get_global_mem_id(&self) -> AbstractIdentifier {
AbstractIdentifier::new(
self.stack_id.get_tid().clone(),
AbstractLocation::GlobalAddress {
address: 0,
size: self.stack_id.bytesize(),
},
)
}
}
impl AbstractDomain for State {
/// Merge two states
fn merge(&self, other: &Self) -> Self {
assert_eq!(self.stack_id, other.stack_id);
let merged_memory_objects = self.memory.merge(&other.memory);
State {
register: self.register.merge(&other.register),
memory: merged_memory_objects,
stack_id: self.stack_id.clone(),
known_global_addresses: self.known_global_addresses.clone(),
}
}
/// A state has no *Top* element
fn is_top(&self) -> bool {
false
}
}
impl State {
/// Get a more compact json-representation of the state.
/// Intended for pretty printing, not useable for serialization/deserialization.
pub fn to_json_compact(&self) -> serde_json::Value {
use serde_json::*;
let mut state_map = Map::new();
let register = self
.register
.iter()
.map(|(var, data)| (var.name.clone(), data.to_json_compact()))
.collect();
let register = Value::Object(register);
state_map.insert("register".into(), register);
state_map.insert("memory".into(), self.memory.to_json_compact());
state_map.insert(
"stack_id".into(),
Value::String(format!("{}", self.stack_id)),
);
Value::Object(state_map)
}
}
/// Sort parameters by recursion depth.
/// Helper function when one has to iterate over parameters in order of their recursion depth.
fn sort_params_by_recursion_depth(
params: &BTreeMap<AbstractLocation, AccessPattern>,
) -> BTreeMap<u64, BTreeMap<&AbstractLocation, &AccessPattern>> {
let mut sorted_params = BTreeMap::new();
for (param, access_pattern) in params {
let recursion_depth = param.recursion_depth();
let bucket = sorted_params
.entry(recursion_depth)
.or_insert(BTreeMap::new());
bucket.insert(param, access_pattern);
}
sorted_params
}
#[cfg(test)]
mod tests;