1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
//! Methods of [`State`] for manipulating abstract IDs.
use super::*;
use crate::analysis::pointer_inference::object::AbstractObject;
use crate::analysis::pointer_inference::POINTER_RECURSION_DEPTH_LIMIT;
impl State {
/// Search (recursively) through all memory objects referenced by the given IDs
/// and add all IDs reachable through concrete pointers contained in them to the set of IDs.
///
/// This uses an underapproximation of the referenced IDs of a memory object,
/// i.e. IDs may be missing if the analysis lost track of the corresponding pointer.
pub fn add_directly_reachable_ids_to_id_set(
&self,
mut ids: BTreeSet<AbstractIdentifier>,
) -> BTreeSet<AbstractIdentifier> {
let mut unsearched_ids = ids.clone();
while let Some(id) = unsearched_ids.iter().next() {
let id = id.clone();
unsearched_ids.remove(&id);
let memory_ids = self.memory.get_referenced_ids_underapproximation(&id);
for mem_id in memory_ids {
if !ids.contains(&mem_id) {
ids.insert(mem_id.clone());
unsearched_ids.insert(mem_id.clone());
}
}
}
ids
}
/// Search (recursively) through all memory objects referenced by the given IDs
/// and add all IDs contained in them to the set of IDs.
///
/// This uses an overapproximation of the referenced IDs of a memory object,
/// i.e. for a memory object it may add IDs as possible references
/// where the corresponding reference is not longer present in the memory object.
pub fn add_recursively_referenced_ids_to_id_set(
&self,
mut ids: BTreeSet<AbstractIdentifier>,
) -> BTreeSet<AbstractIdentifier> {
let mut unsearched_ids = ids.clone();
while let Some(id) = unsearched_ids.iter().next() {
let id = id.clone();
unsearched_ids.remove(&id);
let memory_ids = self.memory.get_referenced_ids_overapproximation(&id);
for mem_id in memory_ids {
if !ids.contains(&mem_id) {
ids.insert(mem_id.clone());
unsearched_ids.insert(mem_id.clone());
}
}
}
ids
}
/// Add the given `param_object` from the callee state to `self`
/// (where `self` represents the state after returning from the callee).
///
/// `param_value_at_call` is the value that the parameter had at the callsite.
/// It is assumed that all IDs contained in the `param_object` are already replaced with values relative to the caller.
///
/// If the `param_object` corresponds to a unique object in `self`
/// then the contents of that object are overwritten with those of `param_object`.
/// Else the contents are only merged with all possible caller objects,
/// since the exact object that corresponds to the callee object is unknown.
pub fn add_param_object_from_callee(
&mut self,
param_object: AbstractObject,
param_value_at_call: &Data,
) -> Result<(), Error> {
if let Some((caller_id, offset)) = param_value_at_call.get_if_unique_target() {
// The corresponding caller object is unique
if let Some(caller_object) = self.memory.get_object_mut(caller_id) {
caller_object.overwrite_with(¶m_object, offset);
} else {
return Err(anyhow!("Missing caller memory object"));
}
} else {
// We cannot exactly identify to which caller object the callee object corresponds.
for (caller_id, offset) in param_value_at_call.get_relative_values() {
if let Some(caller_object) = self.memory.get_object_mut(caller_id) {
let mut param_object = param_object.clone();
param_object.add_offset_to_all_indices(offset);
*caller_object = caller_object.merge(¶m_object);
} else {
return Err(anyhow!("Missing caller memory object"));
}
}
}
Ok(())
}
/// Create an ID renaming map that maps IDs in `self` to the values representing them
/// after unifying and renaming non-parameter objects in `self` in preparation of returning to a caller.
pub fn get_id_to_unified_ids_replacement_map(
&self,
location_to_data_map: &BTreeMap<AbstractIdentifier, Data>,
) -> BTreeMap<AbstractIdentifier, Data> {
let mut id_replacement_map = BTreeMap::new();
for (unified_id, value) in location_to_data_map.iter() {
for (old_id, offset) in value.get_relative_values() {
if old_id.get_tid() != self.get_fn_tid() || !old_id.get_path_hints().is_empty() {
let mut pointer_to_unified_id =
Data::from_target(unified_id.clone(), offset.un_op(UnOpType::Int2Comp));
pointer_to_unified_id.set_contains_top_flag();
id_replacement_map.insert(old_id.clone(), pointer_to_unified_id);
}
}
}
for value in self.register.values() {
for id in value.get_relative_values().keys() {
if id.get_tid() == self.get_fn_tid() && id.get_path_hints().is_empty() {
// This is a parameter ID
id_replacement_map.insert(
id.clone(),
Data::from_target(id.clone(), Bitvector::zero(id.bytesize().into()).into()),
);
}
}
}
for object_id in self.memory.get_all_object_ids() {
for id in self.memory.get_referenced_ids_overapproximation(&object_id) {
if id.get_tid() == self.get_fn_tid() && id.get_path_hints().is_empty() {
// This is a parameter ID
id_replacement_map.insert(
id.clone(),
Data::from_target(id.clone(), Bitvector::zero(id.bytesize().into()).into()),
);
}
}
}
id_replacement_map
}
/// Replace all IDs pointing to non-parameter objects.
/// - IDs contained in the values of the location to data map are replaced by the corresponding key (with adjusted offset).
/// But the Top flag is also set, because the pointers may point to other objects.
/// - All other non-parameter IDs are replaced with Top.
pub fn replace_ids_to_non_parameter_objects(
&mut self,
location_to_data_map: &BTreeMap<AbstractIdentifier, Data>,
) {
let id_replacement_map = self.get_id_to_unified_ids_replacement_map(location_to_data_map);
// Now use the replacement map to replace IDs
for value in self.register.values_mut() {
value.replace_all_ids(&id_replacement_map);
}
for object in self.memory.iter_objects_mut() {
object.replace_ids(&id_replacement_map);
}
// Clean up registers left as Top after the replacement
self.register.retain(|_var, value| !value.is_top());
}
/// Explicitly insert pointers to unified objects at the locations specified by their abstract location.
///
/// Note that these are the only locations where we (by definition) know
/// that the pointer is unique, i.e. we do not have to set a Top flag.
/// However, we still have to add targets to parameter objects, absolute values or the `Top` flag
/// to the pointer if the original pointer value contained them,
/// because these targets were not merged to the unified object.
pub fn insert_pointers_to_unified_objects(
&mut self,
location_to_data_map: &BTreeMap<AbstractIdentifier, Data>,
call_tid: &Tid,
) {
for (unified_id, old_value) in location_to_data_map.iter() {
// Compute the pointer (which may also contain pointers to parameter objects and absolute values).
let mut pointer_to_unified_object = Data::from_target(
unified_id.clone(),
Bitvector::zero(unified_id.bytesize().into()).into(),
);
for (old_id, old_offset) in old_value.get_relative_values() {
if old_id.get_tid() == self.get_fn_tid() && old_id.get_path_hints().is_empty() {
pointer_to_unified_object = pointer_to_unified_object
.merge(&Data::from_target(old_id.clone(), old_offset.clone()));
}
}
pointer_to_unified_object.set_absolute_value(old_value.get_absolute_value().cloned());
if old_value.contains_top() {
pointer_to_unified_object.set_contains_top_flag()
}
// Insert the pointer at the corresponding abstract location
match unified_id.get_location() {
AbstractLocation::Register(var) => {
self.set_register(var, pointer_to_unified_object)
}
unified_location => {
let (parent_location, offset_in_parent_object) = unified_location
.get_parent_location(self.stack_id.bytesize())
.unwrap();
let parent_tid = if unified_id.get_tid() == call_tid {
call_tid.clone()
} else {
// We know that the parent is a parameter object, since we cannot track nested pointers in parameter objects.
self.stack_id.get_tid().clone()
};
let parent_object = self
.memory
.get_object_mut(&AbstractIdentifier::new(parent_tid, parent_location))
.unwrap();
parent_object
.set_value(
pointer_to_unified_object,
&Bitvector::from_i64(offset_in_parent_object)
.into_resize_signed(self.stack_id.bytesize())
.into(),
)
.unwrap();
}
}
}
}
/// Merge the target objects that are non-parameter objects for the given location to data mapping.
/// Return the results as a location to memory object map.
///
/// This function is a step in the process of unifying callee-originating memory objects on a return instruction.
/// The memory objects are also marked as unique, because they will represent a unique object in the caller.
pub fn generate_target_objects_for_new_locations(
&self,
location_to_data_map: &BTreeMap<AbstractIdentifier, Data>,
) -> BTreeMap<AbstractIdentifier, AbstractObject> {
let mut location_to_object_map: BTreeMap<AbstractIdentifier, AbstractObject> =
BTreeMap::new();
for (location_id, value) in location_to_data_map {
let mut new_object: Option<AbstractObject> = None;
'target_loop: for (target_id, target_offset) in value.get_relative_values() {
if (target_id.get_tid() == self.get_fn_tid()
&& target_id.get_path_hints().is_empty())
|| !self.memory.contains(target_id)
{
continue 'target_loop;
}
let target_offset = match target_offset.try_to_offset() {
Ok(offset) => offset,
Err(_) => {
match &mut new_object {
Some(object) => object.assume_arbitrary_writes(&BTreeSet::new()),
None => {
new_object =
Some(AbstractObject::new(None, self.stack_id.bytesize()))
}
}
continue 'target_loop;
}
};
let target_object = self.memory.get_object(target_id).unwrap();
let mut target_object = target_object.clone();
target_object
.add_offset_to_all_indices(&Bitvector::from_i64(-target_offset).into());
match &mut new_object {
None => new_object = Some(target_object),
Some(object) => *object = object.merge(&target_object),
}
}
let mut new_object =
new_object.unwrap_or_else(|| AbstractObject::new(None, self.stack_id.bytesize()));
new_object.mark_as_unique();
new_object.set_object_type(None);
location_to_object_map.insert(location_id.clone(), new_object);
}
location_to_object_map
}
/// Filter out those locations from the location to pointer data map
/// whose non-parameter object targets intersect with any of the other locations.
///
/// Note that this does not filter out locations whose targets contain the `Top` flag,
/// despite the fact that these locations theoretically may point to the same non-parameter object.
/// I.e. we trade soundness in the general case for exactness in the common case here.
pub fn filter_location_to_pointer_data_map(
&self,
location_to_data_map: &mut BTreeMap<AbstractIdentifier, Data>,
) {
let mut visited_targets = HashSet::new();
let mut non_unique_targets = HashSet::new();
for value in location_to_data_map.values() {
for id in value.get_relative_values().keys() {
if id.get_tid() != self.get_fn_tid() && self.memory.contains(id) {
if visited_targets.contains(id) {
non_unique_targets.insert(id.clone());
} else {
visited_targets.insert(id.clone());
}
}
}
}
let mut filtered_out_ids = HashSet::new();
location_to_data_map.retain(|location_id, value| {
for id in value.get_relative_values().keys() {
if non_unique_targets.contains(id) {
filtered_out_ids.insert(location_id.clone());
return false;
}
}
true
});
// Also filter out those locations whose parent locations were filtered out.
location_to_data_map.retain(|location, _| {
if location.get_tid().has_id_suffix("_param") {
return true;
}
for parent in location
.get_location()
.get_all_parent_locations(self.stack_id.bytesize())
{
let parent_id = AbstractIdentifier::new(location.get_tid().clone(), parent);
if filtered_out_ids.contains(&parent_id) {
return false;
}
}
true
});
}
/// Add abstract locations based on register values to the location to pointer data map.
/// The TID for the corresponding abstract IDs is the given `call_tid`.
///
/// This function assumes that `self` has already been minimized
/// and thus all non-parameter register values have been removed from the state.
fn add_register_based_root_locations_to_location_to_pointer_data_map(
&self,
call_tid: &Tid,
location_to_data_map: &mut BTreeMap<AbstractIdentifier, Data>,
) {
for (var, value) in self.register.iter() {
if !var.is_temp && self.contains_non_param_pointer(value) {
let location = AbstractLocation::from_var(var).unwrap();
let id = AbstractIdentifier::new(call_tid.clone(), location);
location_to_data_map.insert(id.clone(), value.clone());
}
}
}
/// Add abstract locations based on parameter objects to the location to pointer data map.
/// The TID for the corresponding abstract IDs is the given `call_tid` with a `_param` suffix.
///
/// The TID suffix is necessary to prevent naming collisions with locations based on return registers.
///
/// This function assumes that the stack memory object of `self` has already been deleted by a call to
/// [`State::minimize_before_return_instruction`](crate::analysis::pointer_inference::State::minimize_before_return_instruction).
fn add_param_based_root_locations_to_location_to_pointer_data_map(
&self,
call_tid: &Tid,
location_to_data_map: &mut BTreeMap<AbstractIdentifier, Data>,
) {
for (object_id, object) in self.memory.iter() {
if object_id.get_tid() == self.get_fn_tid()
&& object_id.get_path_hints().is_empty()
&& object_id.get_location().recursion_depth() < POINTER_RECURSION_DEPTH_LIMIT
{
for (index, value) in object.get_mem_region().iter() {
if self.contains_non_param_pointer(value) {
let location = object_id
.get_location()
.clone()
.dereferenced(value.bytesize(), self.stack_id.bytesize())
.with_offset_addendum(*index);
location_to_data_map.insert(
AbstractIdentifier::new(
call_tid.clone().with_id_suffix("_param"),
location,
),
value.clone(),
);
}
}
}
}
}
/// Derive nested locations from the given list of locations to derive
/// and add them to the location to pointer data map.
fn add_derived_locations_to_location_to_pointer_data_map(
&self,
location_to_data_map: &mut BTreeMap<AbstractIdentifier, Data>,
mut locations_to_derive: BTreeMap<AbstractIdentifier, Data>,
) {
while let Some((location_id, location_data)) = locations_to_derive.pop_first() {
if location_id.get_location().recursion_depth() >= POINTER_RECURSION_DEPTH_LIMIT {
continue;
}
'data_target_loop: for (object_id, object_offset) in location_data.get_relative_values()
{
if object_id.get_tid() == self.get_fn_tid() && object_id.get_path_hints().is_empty()
{
// Ignore parameter objects
continue 'data_target_loop;
}
let object_offset = match object_offset.try_to_offset() {
Ok(offset) => offset,
Err(_) => continue 'data_target_loop,
};
let mem_object = match self.memory.get_object(object_id) {
Some(object) => object,
None => continue 'data_target_loop,
};
for (elem_offset, elem_data) in mem_object.get_mem_region().iter() {
if self.contains_non_param_pointer(elem_data) {
// We want to create a new abstract location for this element.
// But the same abstract location may already exist, so we may have to merge values instead.
let new_location_offset = *elem_offset - object_offset; // TODO: Check correctness of this offset!
let new_location = location_id
.get_location()
.clone()
.dereferenced(elem_data.bytesize(), self.stack_id.bytesize())
.with_offset_addendum(new_location_offset);
let new_location_id =
AbstractIdentifier::new(location_id.get_tid().clone(), new_location);
let new_location_data = elem_data.clone();
location_to_data_map
.entry(new_location_id.clone())
.and_modify(|loc_data| *loc_data = loc_data.merge(&new_location_data))
.or_insert(new_location_data.clone());
locations_to_derive
.entry(new_location_id.clone())
.and_modify(|loc_data| *loc_data = loc_data.merge(&new_location_data))
.or_insert(new_location_data);
}
}
}
}
}
/// Generate a map from abstract locations pointing to non-parameter memory objects
/// to the data represented by the abstract location in the current state.
///
/// The abstract locations get different TIDs depending on the root of the location:
/// - If the root is a return register, then the TID is given by the provided `call_tid`.
/// - If the root is a parameter memory object, then the TID is given by appending the suffix `_param` to the `call_tid`.
/// Since parameter and return register can overlap, the abstract IDs would overlap
/// if one would use the same TID in both cases.
///
/// For return register based location this function also generates nested abstract locations.
///
/// This function assumes that
/// [`State::minimize_before_return_instruction`](crate::analysis::pointer_inference::State::minimize_before_return_instruction)
/// has been called on `self` beforehand.
pub fn map_abstract_locations_to_pointer_data(
&self,
call_tid: &Tid,
) -> BTreeMap<AbstractIdentifier, Data> {
let mut location_to_data_map = BTreeMap::new();
self.add_register_based_root_locations_to_location_to_pointer_data_map(
call_tid,
&mut location_to_data_map,
);
let locations_to_derive = location_to_data_map.clone();
self.add_param_based_root_locations_to_location_to_pointer_data_map(
call_tid,
&mut location_to_data_map,
);
// Add derived locations based on return register locations.
// FIXME: We cannot add derived locations based on parameter objects,
// because the location and ID of their parent objects would be ambiguous
// between parameter objects and other derived locations.
self.add_derived_locations_to_location_to_pointer_data_map(
&mut location_to_data_map,
locations_to_derive,
);
location_to_data_map
}
/// Returns `true` if the value contains at least one reference to a non-parameter
/// (and non-stack) memory object tracked by the current state.
fn contains_non_param_pointer(&self, value: &Data) -> bool {
for id in value.referenced_ids() {
if (id.get_tid() != self.get_fn_tid() || !id.get_path_hints().is_empty())
&& self.memory.contains(id)
{
return true;
}
}
false
}
}