1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//! This module contains the definition of the abstract memory object type.

use super::{Data, ValueDomain};
use crate::abstract_domain::*;
use crate::prelude::*;
use serde::{Deserialize, Serialize};
use std::collections::BTreeSet;
use std::sync::Arc;

/// Methods for manipulating abstract IDs contained in an abstract object.
mod id_manipulation;

/// Methods for handling read/write operations on an abstract object.
mod value_access;

/// An abstract object contains all knowledge tracked about a particular memory object.
///
/// In some cases one abstract object can represent more than one actual memory object.
/// This happens for e.g. several memory objects allocated into an array,
/// since we cannot represent every object separately without knowing the exact number of objects
/// (which may be runtime dependent).
///
/// To allow cheap cloning of abstract objects, the actual data is wrapped in an `Arc`.
///
/// Examples of memory objects:
/// * The stack frame of a function
/// * A memory object allocated on the heap
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct AbstractObject {
    inner: Arc<Inner>,
}

/// The abstract object info contains all information that we track for an abstract object.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
struct Inner {
    /// An upper approximation of all possible targets for which pointers may exist inside the memory region.
    pointer_targets: BTreeSet<AbstractIdentifier>,
    /// Tracks whether this may represent more than one actual memory object.
    is_unique: bool,
    /// Is the object a stack frame, a heap object, or a global memory object.
    type_: Option<ObjectType>,
    /// The actual content of the memory object
    memory: MemRegion<Data>,
}

/// An object can be a stack, a heap, or a global memory object.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy, PartialOrd, Ord)]
pub enum ObjectType {
    /// A stack object, i.e. the stack frame of a function.
    Stack,
    /// A memory object located on the heap.
    Heap,
    /// A memory oject indicating the global memory space.
    GlobalMem,
}

#[allow(clippy::from_over_into)]
impl std::convert::Into<AbstractObject> for Inner {
    fn into(self) -> AbstractObject {
        AbstractObject {
            inner: Arc::new(self),
        }
    }
}

impl AbstractObject {
    /// Create a new abstract object with given object type and address bytesize.
    pub fn new(type_: Option<ObjectType>, address_bytesize: ByteSize) -> AbstractObject {
        let inner = Inner {
            pointer_targets: BTreeSet::new(),
            is_unique: true,
            type_,
            memory: MemRegion::new(address_bytesize),
        };
        inner.into()
    }

    /// Returns `false` if the abstract object may represent more than one object,
    /// e.g. for arrays of objects.
    pub fn is_unique(&self) -> bool {
        self.inner.is_unique
    }

    /// Mark the abstract object as possibly representing more than one actual memory object.
    pub fn mark_as_not_unique(&mut self) {
        let inner = Arc::make_mut(&mut self.inner);
        inner.is_unique = false;
    }

    /// Mark the abstract object as unique, i.e. it represents exactly one memory object.
    pub fn mark_as_unique(&mut self) {
        let inner = Arc::make_mut(&mut self.inner);
        inner.is_unique = true;
    }

    /// Get the type of the memory object.
    pub fn get_object_type(&self) -> Option<ObjectType> {
        self.inner.type_
    }

    /// Set the type of the memory object.
    pub fn set_object_type(&mut self, object_type: Option<ObjectType>) {
        let inner = Arc::make_mut(&mut self.inner);
        inner.type_ = object_type;
    }

    /// Overwrite the values in `self` with those in `other`
    /// under the assumption that the zero offset in `other` corresponds to the offset `offset_other` in `self`.
    ///
    /// If `self` is not a unique memory object or if `offset_other` is not a precisely known offset,
    /// then the function tries to merge `self` and `other`,
    /// since we do not exactly know which values of `self` were overwritten by `other`.
    ///
    /// All values of `self` are marked as possibly overwritten, i.e. `Top`,
    /// but they are only deleted if they intersect a non-`Top` value of `other`.
    /// This approximates the fact that we currently do not track exactly which indices
    /// in `other` were overwritten with a `Top` element and which indices simply were not
    /// accessed at all in `other`.
    pub fn overwrite_with(&mut self, other: &AbstractObject, offset_other: &ValueDomain) {
        if let Ok(obj_offset) = offset_other.try_to_offset() {
            if self.inner.is_unique {
                let inner = Arc::make_mut(&mut self.inner);
                // Overwrite values in the memory region of self with those of other.
                inner.memory.mark_all_values_as_top();
                for (elem_offset, elem) in other.inner.memory.iter() {
                    inner
                        .memory
                        .insert_at_byte_index(elem.clone(), obj_offset + elem_offset);
                }
                // Merge all other properties with those of other.
                inner.is_unique &= other.inner.is_unique;
                inner
                    .pointer_targets
                    .append(&mut other.inner.pointer_targets.clone());
            } else {
                let inner = Arc::make_mut(&mut self.inner);
                let mut other = other.clone();
                let other_inner = Arc::make_mut(&mut other.inner);
                other_inner.memory.add_offset_to_all_indices(obj_offset);

                inner.memory = inner.memory.merge(&other_inner.memory);
                inner.is_unique &= other.inner.is_unique;
                inner
                    .pointer_targets
                    .append(&mut other.inner.pointer_targets.clone());
            }
        } else {
            let inner = Arc::make_mut(&mut self.inner);
            inner.memory.mark_all_values_as_top();
            inner.is_unique &= other.inner.is_unique;
            inner
                .pointer_targets
                .append(&mut other.inner.pointer_targets.clone());
        }
    }

    /// Add an offset to all values contained in the abstract object.
    pub fn add_offset_to_all_indices(&mut self, offset: &ValueDomain) {
        let inner = Arc::make_mut(&mut self.inner);
        if let Ok(offset) = offset.try_to_offset() {
            inner.memory.add_offset_to_all_indices(offset);
        } else {
            inner.memory = MemRegion::new(inner.memory.get_address_bytesize());
        }
    }

    /// Get the memory region abstract domain associated to the memory object.
    pub fn get_mem_region(&self) -> &MemRegion<Data> {
        &self.inner.memory
    }

    /// Overwrite the memory region abstract domain associated to the memory object.
    /// Note that this function does not update the list of known pointer targets accordingly!
    pub fn overwrite_mem_region(&mut self, new_memory_region: MemRegion<Data>) {
        let inner = Arc::make_mut(&mut self.inner);
        inner.memory = new_memory_region;
    }

    /// Add IDs to the list of pointer targets for the memory object.
    pub fn add_ids_to_pointer_targets(&mut self, mut ids_to_add: BTreeSet<AbstractIdentifier>) {
        let inner = Arc::make_mut(&mut self.inner);
        inner.pointer_targets.append(&mut ids_to_add);
    }
}

impl AbstractDomain for AbstractObject {
    /// Merge two abstract objects
    fn merge(&self, other: &Self) -> Self {
        if self == other {
            self.clone()
        } else {
            Inner {
                pointer_targets: self
                    .inner
                    .pointer_targets
                    .union(&other.inner.pointer_targets)
                    .cloned()
                    .collect(),
                is_unique: self.inner.is_unique && other.inner.is_unique,
                type_: same_or_none(&self.inner.type_, &other.inner.type_),
                memory: self.inner.memory.merge(&other.inner.memory),
            }
            .into()
        }
    }

    /// The domain has no *Top* element, thus this function always returns false.
    fn is_top(&self) -> bool {
        false
    }
}

impl AbstractObject {
    /// Get a more compact json-representation of the abstract object.
    /// Intended for pretty printing, not useable for serialization/deserialization.
    pub fn to_json_compact(&self) -> serde_json::Value {
        let mut elements = vec![
            (
                "is_unique".to_string(),
                serde_json::Value::String(format!("{}", self.inner.is_unique)),
            ),
            (
                "type".to_string(),
                serde_json::Value::String(format!("{:?}", self.inner.type_)),
            ),
        ];
        let memory = self
            .inner
            .memory
            .iter()
            .map(|(index, value)| (format!("{index}"), value.to_json_compact()));
        elements.push((
            "memory".to_string(),
            serde_json::Value::Object(memory.collect()),
        ));
        serde_json::Value::Object(elements.into_iter().collect())
    }
}

/// Helper function for merging two `Option<T>` values (merging to `None` if they are not equal).
fn same_or_none<T: Eq + Clone>(left: &Option<T>, right: &Option<T>) -> Option<T> {
    if left.as_ref()? == right.as_ref()? {
        Some(left.as_ref().unwrap().clone())
    } else {
        None
    }
}

#[cfg(test)]
mod tests;