1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
//! A fixpoint algorithm analyzing all memory accesses in a program.
//!
//! The goal of the pointer inference analysis is to keep track of all memory objects and pointers
//! that the program knows about at specific program points during execution.
//! It is a combination of a points-to-analysis and a value-set-analysis.
//! The results of the pointer inference analysis are made available to other analyses,
//! which can use them to look up points-to and value set information.
//!
//! If the **Memory** check is enabled,
//! then the analysis also reports some possible memory management errors,
//! like Null pointer dereferences, to the user.
//!
//! ## The Memory Check
//!
//! If the **Memory** check is enabled, the pointer inference reports instances
//! of [CWE-476](https://cwe.mitre.org/data/definitions/476.html) (NULL Pointer Dereference)
//! that were detected during the analysis.
//!
//! The analysis operates on a best-effort basis.
//! In cases where we cannot know
//! whether an error is due to an error in the memory management of the program under analysis
//! or due to inexactness of the pointer inference analysis itself,
//! we try to treat it as the more likely (but not necessarily true) case of the two.
//!
//! See the `Config` struct for configurable analysis parameters.
use super::fixpoint::Computation;
use super::forward_interprocedural_fixpoint::GeneralizedContext;
use super::interprocedural_fixpoint_generic::NodeValue;
use crate::abstract_domain::{AbstractIdentifier, DataDomain, IntervalDomain, SizedDomain};
use crate::analysis::forward_interprocedural_fixpoint::Context as _;
use crate::analysis::graph::{Graph, Node};
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::log::*;
use petgraph::graph::NodeIndex;
use petgraph::visit::IntoNodeReferences;
use std::collections::{BTreeMap, HashMap};
mod context;
pub mod object;
mod object_list;
mod state;
mod statistics;
mod vsa_result_impl;
use context::Context;
pub use state::State;
/// The version number of the analysis.
const VERSION: &str = "0.2";
/// The recursion limit for nested pointers.
const POINTER_RECURSION_DEPTH_LIMIT: u64 = 2;
/// The name and version number of the "Memory" CWE check.
pub static CWE_MODULE: crate::CweModule = crate::CweModule {
name: "Memory",
version: VERSION,
run: extract_pi_analysis_results,
};
/// The abstract domain to use for absolute values.
pub type ValueDomain = IntervalDomain;
/// The abstract domain type for representing register values.
pub type Data = DataDomain<ValueDomain>;
/// Configurable parameters for the analysis.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Config {
/// Names of extern functions that are `malloc`-like,
/// i.e. the unique return value is a pointer to a newly allocated chunk of memory or a NULL pointer.
pub allocation_symbols: Vec<String>,
}
/// A wrapper struct for the pointer inference computation object.
/// Also contains different analysis results computed through the fixpoint computation including generated log messages.
pub struct PointerInference<'a> {
/// The pointer inference fixpoint computation object.
computation: Computation<GeneralizedContext<'a, Context<'a>>>,
/// A sender channel that can be used to collect logs in the corresponding log thread.
log_collector: crossbeam_channel::Sender<LogThreadMsg>,
/// The log messages and CWE warnings that have been generated during the pointer inference analysis.
pub collected_logs: (Vec<LogMessage>, Vec<CweWarning>),
/// Maps the TIDs of assignment, load or store [`Def`] instructions to the computed value data.
/// The map will be filled after the fixpoint computation finished.
values_at_defs: HashMap<Tid, Data>,
/// Maps the TIDs of load or store [`Def`] instructions to the computed address data.
/// The map will be filled after the fixpoint computation finished.
addresses_at_defs: HashMap<Tid, Data>,
/// Maps certain TIDs like the TIDs of [`Jmp`] instructions to the pointer inference state at that TID.
/// The map will be filled after the fixpoint computation finished.
states_at_tids: HashMap<Tid, State>,
/// Maps the TIDs of call instructions to a map mapping callee IDs to the corresponding value in the caller.
/// The map will be filled after the fixpoint computation finished.
id_renaming_maps_at_calls: HashMap<Tid, BTreeMap<AbstractIdentifier, Data>>,
}
impl<'a> PointerInference<'a> {
/// Generate a new pointer inference computation for a project.
pub fn new(
analysis_results: &'a AnalysisResults<'a>,
config: Config,
log_sender: crossbeam_channel::Sender<LogThreadMsg>,
print_stats: bool,
) -> PointerInference<'a> {
let context = Context::new(analysis_results, config, log_sender.clone());
let project = analysis_results.project;
let function_signatures = analysis_results.function_signatures.unwrap();
let sub_to_entry_node_map = crate::analysis::graph::get_entry_nodes_of_subs(context.graph);
let mut fixpoint_computation =
super::forward_interprocedural_fixpoint::create_computation_with_bottom_up_worklist_order(context, None);
if print_stats {
let _ = log_sender.send(LogThreadMsg::Log(
LogMessage::new_info(format!(
"Adding {} entry points",
sub_to_entry_node_map.len()
))
.source("Pointer Inference"),
));
}
for (sub_tid, start_node_index) in sub_to_entry_node_map.into_iter() {
let fn_signature = function_signatures.get(&sub_tid).unwrap();
let mut fn_entry_state = State::from_fn_sig(
fn_signature,
&project.stack_pointer_register,
sub_tid.clone(),
);
if project.cpu_architecture.contains("MIPS") {
let _ = fn_entry_state
.set_mips_link_register(&sub_tid, project.stack_pointer_register.size);
}
fixpoint_computation.set_node_value(
start_node_index,
super::interprocedural_fixpoint_generic::NodeValue::Value(fn_entry_state),
);
}
PointerInference {
computation: fixpoint_computation,
log_collector: log_sender,
collected_logs: (Vec::new(), Vec::new()),
values_at_defs: HashMap::new(),
addresses_at_defs: HashMap::new(),
states_at_tids: HashMap::new(),
id_renaming_maps_at_calls: HashMap::new(),
}
}
/// Compute the fixpoint of the pointer inference analysis.
/// Has a `max_steps` bound for the fixpoint algorithm to prevent infinite loops.
///
/// If `print_stats` is `true` then some extra log messages with statistics about the computation are generated.
pub fn compute(&mut self, print_stats: bool) {
self.computation.compute_with_max_steps(100); // TODO: make max_steps configurable!
if print_stats {
self.count_blocks_with_state();
}
if !self.computation.has_stabilized() {
let worklist_size = self.computation.get_worklist().len();
self.log_info(format!(
"Fixpoint did not stabilize. Remaining worklist size: {worklist_size}"
));
}
if print_stats {
statistics::compute_and_log_mem_access_stats(self);
}
}
/// Print results serialized as YAML to stdout
pub fn print_yaml(&self) {
let graph = self.computation.get_graph();
for (node_index, value) in self.computation.node_values().iter() {
let node = graph.node_weight(*node_index).unwrap();
if let Ok(string) = serde_yaml::to_string(&(node, value)) {
println!("{string}");
} else {
println!(
"Serializing failed at {node_index:?} with {:?}",
serde_yaml::to_string(value)
);
}
}
}
/// Generate a compacted json representation of the results.
/// Note that this output cannot be used for serialization/deserialization,
/// but is only intended for user output and debugging.
pub fn generate_compact_json(&self) -> serde_json::Value {
let graph = self.computation.get_graph();
let mut json_nodes = serde_json::Map::new();
for (node_index, node_value) in self.computation.node_values().iter() {
let node = graph.node_weight(*node_index).unwrap();
if let NodeValue::Value(value) = node_value {
json_nodes.insert(format!("{node}"), value.to_json_compact());
}
}
serde_json::Value::Object(json_nodes)
}
/// Print a compacted json representation of the results to stdout.
/// Note that this output cannot be used for serialization/deserialization,
/// but is only intended for user output and debugging.
pub fn print_compact_json(&self) {
println!("{:#}", self.generate_compact_json());
}
/// Get the underlying graph of the computation.
pub fn get_graph(&self) -> &Graph {
self.computation.get_graph()
}
/// Get the context object of the computation.
pub fn get_context(&self) -> &Context {
self.computation.get_context().get_context()
}
/// Get the value associated to a node in the computed fixpoint
/// (or intermediate state of the algorithm if the fixpoint has not been reached yet).
/// Returns `None` if no value is associated to the Node.
pub fn get_node_value(&self, node_id: NodeIndex) -> Option<&NodeValue<State>> {
self.computation.get_node_value(node_id)
}
/// Print the number of blocks that have a state associated to them.
/// Intended for debug purposes.
fn count_blocks_with_state(&self) {
let graph = self.computation.get_graph();
let mut stateful_blocks: i64 = 0;
let mut all_blocks: i64 = 0;
for (node_id, node) in graph.node_references() {
if let Node::BlkStart(_block, _sub) = node {
all_blocks += 1;
if self.computation.get_node_value(node_id).is_some() {
stateful_blocks += 1;
}
}
}
self.log_info(format!(
"Blocks with state: {stateful_blocks} / {all_blocks}"
));
}
/// Send an info log message to the log collector.
fn log_info(&self, msg: impl Into<String>) {
let log_msg = LogMessage::new_info(msg.into()).source("Pointer Inference");
let _ = self.log_collector.send(LogThreadMsg::Log(log_msg));
}
/// Fill the various result maps of `self` that are needed for the [`VsaResult`](crate::analysis::vsa_results::VsaResult) trait implementation.
fn fill_vsa_result_maps(&mut self) {
let context = self.computation.get_context().get_context();
let graph = self.computation.get_graph();
for node in graph.node_indices() {
match graph[node] {
Node::BlkStart(blk, _sub) => {
let node_state = match self.computation.get_node_value(node) {
Some(NodeValue::Value(value)) => value,
_ => continue,
};
let mut state = node_state.clone();
for def in &blk.term.defs {
match &def.term {
Def::Assign { var: _, value } => {
self.values_at_defs
.insert(def.tid.clone(), state.eval(value));
}
Def::Load { var, address } => {
let loaded_value = state
.load_value(
address,
var.size,
&context.project.runtime_memory_image,
)
.unwrap_or_else(|_| Data::new_top(var.size));
self.values_at_defs.insert(def.tid.clone(), loaded_value);
self.addresses_at_defs
.insert(def.tid.clone(), state.eval(address));
}
Def::Store { address, value } => {
self.values_at_defs
.insert(def.tid.clone(), state.eval(value));
self.addresses_at_defs
.insert(def.tid.clone(), state.eval(address));
}
}
state = match context.update_def(&state, def) {
Some(new_state) => new_state,
None => break,
}
}
}
Node::BlkEnd(blk, _sub) => {
let node_state = match self.computation.get_node_value(node) {
Some(NodeValue::Value(value)) => value,
_ => continue,
};
for jmp in &blk.term.jmps {
self.states_at_tids
.insert(jmp.tid.clone(), node_state.clone());
}
}
Node::CallSource { .. } => (),
Node::CallReturn {
call: (caller_blk, _caller_sub),
return_: _,
} => {
let call_tid = match caller_blk.term.jmps.first() {
Some(call) => &call.tid,
_ => continue,
};
let (state_before_call, state_before_return) =
match self.computation.get_node_value(node) {
Some(NodeValue::CallFlowCombinator {
call_stub: Some(state_before_call),
interprocedural_flow: Some(state_before_return),
}) => (state_before_call, state_before_return),
_ => continue,
};
let id_to_data_map = context.create_full_callee_id_to_caller_data_map(
state_before_call,
state_before_return,
call_tid,
);
self.id_renaming_maps_at_calls
.insert(call_tid.clone(), id_to_data_map);
}
}
}
}
/// Get the state of the fixpoint computation at the block end node before the given jump instruction.
/// This function only yields results after the fixpoint has been computed.
pub fn get_state_at_jmp_tid(&self, jmp_tid: &Tid) -> Option<&State> {
self.states_at_tids.get(jmp_tid)
}
/// Get the mapping from callee IDs to caller values for the given call.
/// This function only yields results after the fixpoint has been computed.
///
/// Note that the maps may contain mappings from callee IDs to temporary caller IDs that get instantly removed from the caller
/// since they are not referenced in any caller object.
pub fn get_id_renaming_map_at_call_tid(
&self,
call_tid: &Tid,
) -> Option<&BTreeMap<AbstractIdentifier, Data>> {
self.id_renaming_maps_at_calls.get(call_tid)
}
/// Print information on dead ends in the control flow graph for debugging purposes.
/// Ignore returns where there is no known caller stack id.
#[allow(dead_code)]
fn print_cfg_dead_ends(&self) {
let graph = self.computation.get_graph();
for (node_id, node) in graph.node_references() {
if let Some(node_value) = self.computation.get_node_value(node_id) {
if !graph
.neighbors(node_id)
.any(|neighbor| self.computation.get_node_value(neighbor).is_some())
{
match node {
Node::BlkEnd(block, _sub) => {
let state = node_value.unwrap_value();
if block.term.jmps.is_empty() {
println!("Dead end without jumps after block {}", block.tid);
}
for jmp in block.term.jmps.iter() {
match &jmp.term {
Jmp::BranchInd(target_expr) => {
let address = state.eval(target_expr);
println!(
"{}: Indirect jump to {}",
jmp.tid,
address.to_json_compact()
);
}
Jmp::CallInd { target, return_ } => {
let address = state.eval(target);
println!(
"{}: Indirect call to {}. HasReturn: {}",
jmp.tid,
address.to_json_compact(),
return_.is_some()
);
}
Jmp::Return(_) => {}
_ => println!(
"{}: Unexpected Jmp dead end: {:?}",
jmp.tid, jmp.term
),
}
}
}
Node::BlkStart(block, _sub) => {
println!("{}: ERROR: Block start without successor state!", block.tid)
}
Node::CallSource { source, .. } => {
println!("{}: ERROR: Call source without target!", source.0.tid)
}
Node::CallReturn { call, return_ } => {
let (call_state, return_state) = match node_value {
NodeValue::CallFlowCombinator {
call_stub,
interprocedural_flow,
} => (call_stub.is_some(), interprocedural_flow.is_some()),
_ => panic!(),
};
println!(
"CallReturn. Caller: ({}, {}), Return: ({}, {})",
call.0.tid, call_state, return_.0.tid, return_state
);
}
}
}
}
}
}
}
/// The entry point for the memory analysis check.
/// Does not actually compute anything
/// but just extracts the results of the already computed pointer inference analysis.
pub fn extract_pi_analysis_results(
analysis_results: &AnalysisResults,
_analysis_params: &serde_json::Value,
) -> (Vec<LogMessage>, Vec<CweWarning>) {
let pi_anaylsis = analysis_results.pointer_inference.unwrap();
pi_anaylsis.collected_logs.clone()
}
/// Compute the pointer inference analysis and return its results.
///
/// If `print_debug` is set to `true` print debug information to *stdout*.
/// Note that the format of the debug information is currently unstable and subject to change.
pub fn run<'a>(
analysis_results: &'a AnalysisResults<'a>,
config: Config,
print_debug: bool,
print_stats: bool,
) -> PointerInference<'a> {
let logging_thread = LogThread::spawn(LogThread::collect_and_deduplicate);
let mut computation = PointerInference::new(
analysis_results,
config,
logging_thread.get_msg_sender(),
print_stats,
);
computation.compute(print_stats);
computation.fill_vsa_result_maps();
if print_debug {
computation.print_compact_json();
}
// save the logs and CWE warnings
computation.collected_logs = logging_thread.collect();
computation
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::abstract_domain::AbstractLocation;
use crate::analysis::vsa_results::VsaResult;
use crate::intermediate_representation::{Arg, Expression, RuntimeMemoryImage, Tid};
use crate::ByteSize;
impl<'a> PointerInference<'a> {
pub fn mock(project: &'a Project) -> PointerInference<'a> {
let analysis_results = Box::new(AnalysisResults::mock_from_project(project));
let analysis_results: &'a AnalysisResults = Box::leak(analysis_results);
let config = Config {
allocation_symbols: vec!["malloc".to_string()],
};
let (log_sender, _) = crossbeam_channel::unbounded();
PointerInference::new(analysis_results, config, log_sender, false)
}
pub fn set_node_value(&mut self, node_value: State, node_index: NodeIndex) {
self.computation
.set_node_value(node_index, NodeValue::Value(node_value));
}
pub fn get_mut_values_at_defs(&mut self) -> &mut HashMap<Tid, Data> {
&mut self.values_at_defs
}
pub fn get_mut_addresses_at_defs(&mut self) -> &mut HashMap<Tid, Data> {
&mut self.addresses_at_defs
}
pub fn get_mut_states_at_tids(&mut self) -> &mut HashMap<Tid, State> {
&mut self.states_at_tids
}
}
/// Simple placeholder for an object that implements the [`VsaResult`]
/// trait.
///
/// The [`ValueDomain`] of the VSA is the pointer inference [`Data`] and
/// expressions are evaluated based on a fixed pointer inference [`State`]
/// that is stored in the `state` member.
///
/// When asked to return [`values`] or [`addresses`] at Defs it always just
/// returns the stored `value_at_def` or `address_at_def` members. In
/// general, it completely ignores any [`Tid`] you give it as an argument.
///
/// [`ValueDomain`]: VsaResult::ValueDomain
/// [`values`]: VsaResult::eval_value_at_def
/// [`addresses`]: VsaResult::eval_address_at_def
#[derive(Debug)]
pub struct MockVsaResult {
state: State,
address_at_def: Data,
value_at_def: Data,
runtime_memory_image: RuntimeMemoryImage,
}
impl MockVsaResult {
pub fn new(
state: State,
address_at_def: Option<Data>,
value_at_def: Option<Data>,
runtime_memory_image: Option<RuntimeMemoryImage>,
) -> Self {
Self {
state,
address_at_def: address_at_def.unwrap_or(Data::new_empty(ByteSize::new(8))),
value_at_def: value_at_def.unwrap_or(Data::new_empty(ByteSize::new(8))),
runtime_memory_image: runtime_memory_image
.unwrap_or(RuntimeMemoryImage::empty(true)),
}
}
pub fn set_state(&mut self, new_state: State) {
self.state = new_state
}
}
impl VsaResult for MockVsaResult {
type ValueDomain = Data;
fn eval_address_at_def(&self, _def_tid: &Tid) -> Option<Data> {
Some(self.address_at_def.clone())
}
fn eval_value_at_def(&self, _def_tid: &Tid) -> Option<Data> {
Some(self.value_at_def.clone())
}
fn eval_at_jmp(&self, _jmp_tid: &Tid, expression: &Expression) -> Option<Data> {
Some(self.state.eval(expression))
}
fn eval_parameter_arg_at_call(&self, _jmp_tid: &Tid, parameter: &Arg) -> Option<Data> {
self.state
.eval_parameter_arg(parameter, &self.runtime_memory_image)
.ok()
}
fn eval_parameter_location_at_call(
&self,
_jmp_tid: &Tid,
parameter: &AbstractLocation,
) -> Option<Data> {
Some(
self.state
.eval_abstract_location(parameter, &self.runtime_memory_image),
)
}
fn eval_at_node(&self, _node: NodeIndex, expression: &Expression) -> Option<Data> {
Some(self.state.eval(expression))
}
}
}