1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
use super::*;

impl<'a> crate::analysis::forward_interprocedural_fixpoint::Context<'a> for Context<'a> {
    type Value = State;

    /// Get the underlying graph on which the analysis operates.
    fn get_graph(&self) -> &Graph<'a> {
        self.graph
    }

    /// Merge two state values.
    fn merge(&self, value1: &State, value2: &State) -> State {
        value1.merge(value2)
    }

    /// Update the state according to the effects of the given `Def` term.
    fn update_def(&self, state: &Self::Value, def: &Term<Def>) -> Option<Self::Value> {
        let mut new_state = state.clone();
        // check for null dereferences
        match new_state.check_def_for_null_dereferences(def) {
            Err(_) => {
                self.report_null_deref(&def.tid);
                return None;
            }
            Ok(true) => self.report_null_deref(&def.tid),
            Ok(false) => (), // no null dereference detected
        }

        match &def.term {
            Def::Store { address, value } => {
                self.log_debug(
                    new_state.handle_store(address, value, &self.project.runtime_memory_image),
                    Some(&def.tid),
                );
                Some(new_state)
            }
            Def::Assign { var, value } => {
                new_state.handle_register_assign(var, value);
                Some(new_state)
            }
            Def::Load { var, address } => {
                if !self.is_mips_gp_load_to_top_value(state, var, address) {
                    self.log_debug(
                        new_state.handle_load(var, address, &self.project.runtime_memory_image),
                        Some(&def.tid),
                    );
                }
                // Else we ignore the load and hope that the value still contained in the gp register is still correct.
                // This only works because gp is (incorrectly) marked as a callee-saved register.
                // FIXME: If the rest of the analysis becomes good enough so that this case is not common anymore,
                // we should log it.
                Some(new_state)
            }
        }
    }

    /// Update the state according to the effects of the given `Jmp` term.
    fn update_jump(
        &self,
        state: &State,
        _jump: &Term<Jmp>,
        _untaken_conditional: Option<&Term<Jmp>>,
        _target: &Term<Blk>,
    ) -> Option<State> {
        let new_state = state.clone();
        Some(new_state)
    }

    /// Update the state according to the effects of the given `Call` term.
    /// The resulting state is the state at the start of the call target function.
    fn update_call(
        &self,
        _state: &State,
        call_term: &Term<Jmp>,
        _target_node: &crate::analysis::graph::Node,
        _calling_convention: &Option<String>,
    ) -> Option<State> {
        if let Jmp::Call { .. } = call_term.term {
            // No information flows from caller to the callee in the analysis.
            None
        } else if let Jmp::CallInd { .. } = call_term.term {
            panic!("Indirect call edges not yet supported.")
        } else {
            panic!("Malformed control flow graph: Call edge was not a call.")
        }
    }

    /// Update the state according to the effects of the given return instruction.
    /// The `state_before_call` is used to reconstruct caller-specific information like the caller stack frame.
    fn update_return(
        &self,
        state_before_return: Option<&State>,
        state_before_call: Option<&State>,
        call_term: &Term<Jmp>,
        return_term: &Term<Jmp>,
        calling_convention_opt: &Option<String>,
    ) -> Option<State> {
        let (state_before_call, state_before_return) =
            match (state_before_call, state_before_return) {
                (Some(state_call), Some(state_return)) => (state_call, state_return),
                (Some(state_call), None) => {
                    if self.is_indirect_call_with_top_target(state_call, call_term) {
                        // We know nothing about the call target.
                        return self.handle_call_to_generic_unknown_function(state_call);
                    } else {
                        // We know at least something about the call target.
                        // Since we don't have a return value,
                        // we assume that the called function may not return at all.
                        return None;
                    }
                }
                (None, Some(_state_return)) => return None, // we only return to functions with a value before the call to prevent returning to dead code
                (None, None) => return None,
            };

        let cconv = match self
            .project
            .get_specific_calling_convention(calling_convention_opt)
        {
            Some(cconv) => cconv,
            None => {
                // If we neither know the specific nor a default calling convention for the function,
                // then we treat it as a dead end in the control flow graph.
                return None;
            }
        };
        let callee_fn_sig = match self.fn_signatures.get(state_before_return.get_fn_tid()) {
            Some(fn_sig) => fn_sig,
            None => {
                let location = state_before_return.get_fn_tid();
                self.log_error(
                    Err(anyhow!(
                        "Internal function {} has no function signature.",
                        location
                    )),
                    Some(location),
                );
                return None;
            }
        };

        // Detect possible information loss on the stack pointer and report it.
        if let Err(err) = self.detect_stack_pointer_information_loss_on_return(state_before_return)
        {
            self.log_debug(Err(err), Some(&return_term.tid));
            // This is an indicator of an analysis error
            // or a call to a non-returning extern function that was not marked as non-returning.
            return None;
        }
        // Minimize the callee state and replace callee-originating object IDs whenever possible.
        let mut state_before_return = state_before_return.clone();
        state_before_return.minimize_before_return_instruction(callee_fn_sig, cconv);
        state_before_return.merge_mem_objects_with_unique_abstract_location(&call_term.tid);
        // Create a mapping of IDs from the callee to IDs that should be used in the caller.
        let id_map =
            self.create_callee_id_to_caller_data_map(state_before_call, &state_before_return);
        let callee_id_to_access_pattern_map =
            self.create_id_to_access_pattern_map(&state_before_return);
        // Identify caller IDs for which the callee analysis may be unsound for this callsite.
        let unsound_caller_ids =
            self.get_unsound_caller_ids(&id_map, &callee_id_to_access_pattern_map);
        // FIXME: Unsound caller IDs occur too often to log the cases right now.
        // We have to investigate the reasons for it (maybe too many parameters on the caller stack?)
        // and find better heuristics to prevent them poisoning the analysis soundness.

        let mut state_after_return = state_before_call.clone();
        // Adjust register values of state_after_return
        state_after_return.remove_non_callee_saved_register(cconv);
        self.adjust_stack_register_on_return_from_call(state_before_call, &mut state_after_return);
        for return_reg in cconv.get_all_return_register() {
            let mut return_value = state_before_return.get_register(return_reg);
            return_value.replace_all_ids(&id_map);
            if !return_value.is_top() {
                state_after_return.set_register(return_reg, return_value);
            }
        }
        // Merge or add memory objects from the callee to the caller state.
        for (callee_object_id, callee_object) in state_before_return.memory.iter() {
            if *callee_object_id == state_before_return.stack_id {
                // The callee stack frame does not exist anymore after return to the caller.
                continue;
            }
            if *callee_object_id == state_before_return.get_global_mem_id() {
                self.merge_non_nested_global_mem_from_callee(
                    &mut state_after_return,
                    callee_object,
                    &id_map,
                    callee_fn_sig,
                    &call_term.tid,
                );
                continue;
            }
            if Some(false)
                == callee_id_to_access_pattern_map
                    .get(callee_object_id)
                    .map(|access_pattern| access_pattern.is_mutably_dereferenced())
            {
                // We do not have to modify anything for parameter objects that are only read but not written to.
                continue;
            }
            let mut callee_object = callee_object.clone();
            callee_object.replace_ids(&id_map);

            if !callee_id_to_access_pattern_map.contains_key(callee_object_id) {
                // Add a callee object that does not correspond to a parameter to the caller or the stack of the callee.
                state_after_return
                    .memory
                    .insert(callee_object_id.clone(), callee_object);
            } else {
                // The callee object is a parameter object.
                self.log_debug(
                    state_after_return.add_param_object_from_callee(
                        callee_object,
                        id_map.get(callee_object_id).unwrap(),
                    ),
                    Some(&call_term.tid),
                );
            }
        }
        // Additionally assume arbitrary writes for every caller ID where the callee handling might be unsound.
        for id in &unsound_caller_ids {
            state_after_return
                .memory
                .assume_arbitrary_writes_to_object(id, &BTreeSet::new());
        }
        // Cleanup
        state_after_return.remove_unreferenced_objects();

        Some(state_after_return)
    }

    /// Update the state according to the effect of a call to an extern symbol
    /// or an indirect call where nothing is known about the call target.
    fn update_call_stub(&self, state: &State, call: &Term<Jmp>) -> Option<State> {
        let call_target = match &call.term {
            Jmp::Call { target, .. } => target,
            Jmp::CallInd { .. } => {
                if self.is_indirect_call_with_top_target(state, call) {
                    // We know nothing about the call target.
                    return self.handle_call_to_generic_unknown_function(state);
                } else {
                    return None;
                }
            }
            _ => panic!("Malformed control flow graph encountered."),
        };
        let mut new_state = state.clone();
        if let Some(extern_symbol) = self.extern_symbol_map.get(call_target) {
            // Clear non-callee-saved registers from the state.
            let cconv = self.project.get_calling_convention(extern_symbol);
            new_state.clear_non_callee_saved_register(&cconv.callee_saved_register[..]);
            // Adjust stack register value (for x86 architecture).
            self.adjust_stack_register_on_return_from_call(state, &mut new_state);

            match extern_symbol.name.as_str() {
                "sscanf" => {
                    self.log_debug(
                        self.handle_params_of_sscanf_call(
                            state,
                            &mut new_state,
                            extern_symbol,
                            &call.tid,
                        ),
                        Some(&call.tid),
                    );
                    Some(new_state)
                }
                malloc_like_fn if self.allocation_symbols.iter().any(|x| x == malloc_like_fn) => {
                    Some(self.add_new_object_in_call_return_register(
                        new_state,
                        call,
                        extern_symbol,
                    ))
                }
                stubbed_fn
                    if self
                        .extern_fn_param_access_patterns
                        .contains_key(stubbed_fn) =>
                {
                    self.handle_parameter_access_for_stubbed_functions(
                        state,
                        &mut new_state,
                        extern_symbol,
                    );

                    let return_value =
                        self.compute_return_value_for_stubbed_function(state, extern_symbol);
                    new_state.set_register(&cconv.integer_return_register[0], return_value);

                    Some(new_state)
                }
                _ => Some(self.handle_generic_extern_call(state, new_state, call, extern_symbol)),
            }
        } else {
            panic!("Extern symbol not found.");
        }
    }

    /// Update the state with the knowledge that some conditional evaluated to true or false.
    fn specialize_conditional(
        &self,
        state: &State,
        condition: &Expression,
        _block_before_condition: &Term<Blk>,
        is_true: bool,
    ) -> Option<State> {
        let mut specialized_state = state.clone();
        match specialized_state
            .specialize_by_expression_result(condition, Bitvector::from_u8(is_true as u8).into())
        {
            Ok(_) => Some(specialized_state),
            // State is unsatisfiable
            Err(_) => None,
        }
    }
}