1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
use crate::abstract_domain::*;
use crate::analysis::function_signature::AccessPattern;
use crate::analysis::function_signature::FunctionSignature;
use crate::analysis::graph::Graph;
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::log::*;
use std::collections::{BTreeMap, BTreeSet};
use super::object::AbstractObject;
use super::state::State;
use super::{Config, Data, VERSION};
/// Contains methods of the `Context` struct that deal with the manipulation of abstract IDs.
mod id_manipulation;
/// Methods and functions for handling extern symbol stubs.
mod stubs;
/// Contains trait implementations for the `Context` struct,
/// especially the implementation of the [`forward_interprocedural_fixpoint::Context`](crate::analysis::forward_interprocedural_fixpoint::Context) trait.
mod trait_impls;
/// Contains all context information needed for the pointer inference fixpoint computation.
///
/// The struct also implements the [`forward_interprocedural_fixpoint::Context`](crate::analysis::forward_interprocedural_fixpoint::Context) trait to enable the fixpoint computation.
pub struct Context<'a> {
/// The program control flow graph on which the fixpoint will be computed
pub graph: &'a Graph<'a>,
/// A reference to the `Project` object representing the binary
pub project: &'a Project,
/// Maps the TIDs of functions that shall be treated as extern symbols to the `ExternSymbol` object representing it.
pub extern_symbol_map: &'a BTreeMap<Tid, ExternSymbol>,
/// Maps the TIDs of internal functions to the function signatures computed for it.
pub fn_signatures: &'a BTreeMap<Tid, FunctionSignature>,
/// Maps the names of stubbed extern symbols to the corresponding function signatures.
pub extern_fn_param_access_patterns: BTreeMap<&'static str, Vec<AccessPattern>>,
/// A channel where found CWE warnings and log messages should be sent to.
/// The receiver may filter or modify the warnings before presenting them to the user.
/// For example, the same CWE warning will be found several times
/// if the fixpoint computation does not instantly stabilize at the corresponding code point.
/// These duplicates need to be filtered out.
pub log_collector: crossbeam_channel::Sender<LogThreadMsg>,
/// Names of `malloc`-like extern functions.
pub allocation_symbols: Vec<String>,
}
impl<'a> Context<'a> {
/// Create a new context object for a given project.
/// Also needs two channels as input to know where CWE warnings and log messages should be sent to.
pub fn new(
analysis_results: &'a AnalysisResults<'a>,
config: Config,
log_collector: crossbeam_channel::Sender<LogThreadMsg>,
) -> Context<'a> {
Context {
graph: analysis_results.control_flow_graph,
project: analysis_results.project,
extern_symbol_map: &analysis_results.project.program.term.extern_symbols,
fn_signatures: analysis_results.function_signatures.unwrap(),
extern_fn_param_access_patterns:
crate::analysis::function_signature::stubs::generate_param_access_stubs(),
log_collector,
allocation_symbols: config.allocation_symbols,
}
}
/// Return `true` if the all of the following properties hold:
/// * The CPU architecture is a MIPS variant and `var` is the MIPS global pointer register `gp`
/// * Loading the value at `address` into the register `var` would overwrite the value of `var` with a `Top` value.
fn is_mips_gp_load_to_top_value(
&self,
state: &State,
var: &Variable,
address: &Expression,
) -> bool {
if self.project.cpu_architecture.contains("MIPS") && var.name == "gp" {
if let Ok(gp_val) =
state.load_value(address, var.size, &self.project.runtime_memory_image)
{
gp_val.is_top()
} else {
true
}
} else {
false
}
}
/// If `result` is an `Err`, log the error message as a debug message through the `log_collector` channel.
pub fn log_debug(&self, result: Result<(), Error>, location: Option<&Tid>) {
if let Err(err) = result {
let mut log_message =
LogMessage::new_debug(format!("{err}")).source("Pointer Inference");
if let Some(loc) = location {
log_message = log_message.location(loc.clone());
};
let _ = self.log_collector.send(LogThreadMsg::Log(log_message));
}
}
/// If `result` is an `Err`, log the error message as an error message through the `log_collector` channel.
pub fn log_error(&self, result: Result<(), Error>, location: Option<&Tid>) {
if let Err(err) = result {
let mut log_message =
LogMessage::new_error(format!("{err}")).source("Pointer Inference");
if let Some(loc) = location {
log_message = log_message.location(loc.clone());
};
let _ = self.log_collector.send(LogThreadMsg::Log(log_message));
}
}
/// Detect and log if the stack pointer is not as expected when returning from a function.
fn detect_stack_pointer_information_loss_on_return(
&self,
state_before_return: &State,
) -> Result<(), Error> {
let expected_stack_pointer_offset = match self.project.cpu_architecture.as_str() {
"x86" | "x86_32" | "x86_64" => {
Bitvector::from_u64(u64::from(self.project.get_pointer_bytesize()))
.into_truncate(apint::BitWidth::from(self.project.get_pointer_bytesize()))
.unwrap()
}
_ => Bitvector::zero(apint::BitWidth::from(self.project.get_pointer_bytesize())),
};
match state_before_return
.get_register(&self.project.stack_pointer_register)
.get_if_unique_target()
{
Some((id, offset))
if *id == state_before_return.stack_id
&& *offset == expected_stack_pointer_offset.into() =>
{
Ok(())
}
_ => Err(anyhow!("Unexpected stack register value on return")),
}
}
/// Add a new abstract object and a pointer to it in the return register of an extern call.
/// This models the behaviour of `malloc`-like functions,
/// except that we cannot represent possible `NULL` pointers as return values yet.
fn add_new_object_in_call_return_register(
&self,
mut state: State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) -> State {
let address_bytesize = self.project.get_pointer_bytesize();
match extern_symbol.get_unique_return_register() {
Ok(return_register) => {
let object_id = AbstractIdentifier::new(
call.tid.clone(),
AbstractLocation::from_var(return_register).unwrap(),
);
state.memory.add_abstract_object(
object_id.clone(),
address_bytesize,
Some(super::object::ObjectType::Heap),
);
let pointer = Data::from_target(
object_id,
Bitvector::zero(apint::BitWidth::from(address_bytesize)).into(),
);
state.set_register(return_register, pointer);
state
}
Err(err) => {
// We cannot track the new object, since we do not know where to store the pointer to it.
self.log_debug(Err(err), Some(&call.tid));
state
}
}
}
/// Check whether the jump is an indirect call whose target evaluates to a *Top* value in the given state.
fn is_indirect_call_with_top_target(&self, state: &State, call: &Term<Jmp>) -> bool {
match &call.term {
Jmp::CallInd { target, .. } => state.eval(target).is_top(),
_ => false,
}
}
/// Adjust the stack register after a call to a function.
///
/// On x86, this removes the return address from the stack
/// (other architectures pass the return address in a register, not on the stack).
/// On other architectures the stack register retains the value it had before the call.
/// Note that in some calling conventions the callee also clears function parameters from the stack.
/// We do not detect and handle these cases yet.
fn adjust_stack_register_on_return_from_call(
&self,
state_before_call: &State,
new_state: &mut State,
) {
let stack_register = &self.project.stack_pointer_register;
let stack_pointer = state_before_call.get_register(stack_register);
match self.project.cpu_architecture.as_str() {
"x86" | "x86_32" | "x86_64" => {
let offset = Bitvector::from_u64(stack_register.size.into())
.into_truncate(apint::BitWidth::from(stack_register.size))
.unwrap();
new_state.set_register(
stack_register,
stack_pointer.bin_op(BinOpType::IntAdd, &offset.into()),
);
}
_ => new_state.set_register(stack_register, stack_pointer),
}
}
/// Handle an extern symbol call, whose concrete effect on the state is unknown.
/// Basically, we assume that the call may write to all memory objects and registers that is has access to.
fn handle_generic_extern_call(
&self,
state: &State,
mut new_state: State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) -> State {
self.log_debug(
new_state.clear_stack_parameter(extern_symbol, &self.project.runtime_memory_image),
Some(&call.tid),
);
let calling_conv = self.project.get_calling_convention(extern_symbol);
let mut possible_referenced_ids = BTreeSet::new();
if extern_symbol.parameters.is_empty() && extern_symbol.return_values.is_empty() {
// We assume here that we do not know the parameters and approximate them by all possible parameter registers.
// This approximation is wrong if the function is known but has neither parameters nor return values.
// We cannot distinguish these two cases yet.
for parameter_register in calling_conv.integer_parameter_register.iter() {
let register_value = state.get_register(parameter_register);
possible_referenced_ids.extend(register_value.referenced_ids().cloned());
}
for float_parameter_expression in calling_conv.float_parameter_register.iter() {
let register_value = state.eval(float_parameter_expression);
possible_referenced_ids.extend(register_value.referenced_ids().cloned());
}
} else {
for parameter in extern_symbol.parameters.iter() {
if let Ok(data) =
state.eval_parameter_arg(parameter, &self.project.runtime_memory_image)
{
possible_referenced_ids.extend(data.referenced_ids().cloned());
}
}
}
possible_referenced_ids =
state.add_recursively_referenced_ids_to_id_set(possible_referenced_ids);
// Delete content of all referenced objects, as the function may write to them.
for id in possible_referenced_ids.iter() {
new_state
.memory
.assume_arbitrary_writes_to_object(id, &possible_referenced_ids);
}
new_state
}
/// Handle a generic call whose target function is unknown.
///
/// This function just assumes that the target of the call uses a reasonable standard calling convention
/// and that it may access (and write to) all parameter registers of this calling convention.
/// We also assume that the function does not use any parameters saved on the stack,
/// which may greatly reduce correctness of the analysis for the x86_32 architecture.
fn handle_call_to_generic_unknown_function(&self, state_before_call: &State) -> Option<State> {
if let Some(calling_conv) = self.project.get_standard_calling_convention() {
let mut new_state = state_before_call.clone();
new_state.clear_non_callee_saved_register(&calling_conv.callee_saved_register[..]);
// Adjust stack register value (for x86 architecture).
self.adjust_stack_register_on_return_from_call(state_before_call, &mut new_state);
let mut possible_referenced_ids = BTreeSet::new();
for parameter_register in calling_conv.integer_parameter_register.iter() {
let register_value = state_before_call.get_register(parameter_register);
possible_referenced_ids.extend(register_value.referenced_ids().cloned());
}
for float_parameter_expression in calling_conv.float_parameter_register.iter() {
let register_value = state_before_call.eval(float_parameter_expression);
possible_referenced_ids.extend(register_value.referenced_ids().cloned());
}
possible_referenced_ids =
state_before_call.add_recursively_referenced_ids_to_id_set(possible_referenced_ids);
// Delete content of all referenced objects, as the function may write to them.
for id in possible_referenced_ids.iter() {
new_state
.memory
.assume_arbitrary_writes_to_object(id, &possible_referenced_ids);
}
Some(new_state)
} else {
None // We don't try to handle cases where we cannot guess a reasonable standard calling convention.
}
}
/// Report a NULL dereference CWE at the address of the given TID.
fn report_null_deref(&self, tid: &Tid) {
let warning = CweWarning {
name: "CWE476".to_string(),
version: VERSION.to_string(),
addresses: vec![tid.address.clone()],
tids: vec![format!("{tid}")],
symbols: Vec::new(),
other: Vec::new(),
description: format!(
"(NULL Pointer Dereference) Memory access at {} may result in a NULL dereference",
tid.address
),
};
let _ = self.log_collector.send(LogThreadMsg::Cwe(warning));
}
/// Merge global memory data from the callee global memory object to the caller global memory object
/// if the corresponding global variable is marked as mutable in both the caller and callee.
fn merge_non_nested_global_mem_from_callee(
&self,
caller_state: &mut State,
callee_global_mem: &AbstractObject,
replacement_map: &BTreeMap<AbstractIdentifier, Data>,
callee_fn_sig: &FunctionSignature,
call_tid: &Tid,
) {
let caller_global_mem_id = caller_state.get_global_mem_id();
let caller_fn_sig = self.fn_signatures.get(caller_state.get_fn_tid()).unwrap();
let caller_global_mem = caller_state
.memory
.get_object_mut(&caller_global_mem_id)
.unwrap();
// Get the intervals corresponding to global variables
// and the access pattern that denotes which globals should be overwritten by callee data.
let intervals =
compute_call_return_global_var_access_intervals(caller_fn_sig, callee_fn_sig);
let mut caller_mem_region = caller_global_mem.get_mem_region().clone();
mark_values_in_caller_global_mem_as_potentially_overwritten(
&mut caller_mem_region,
&intervals,
);
// Insert values from the callee into the memory object.
let mut referenced_ids = BTreeSet::new();
for (index, value) in callee_global_mem.get_mem_region().iter() {
if let Some((_interval_start, access_pattern)) =
intervals.range(..((*index + 1) as u64)).last()
{
if access_pattern.is_mutably_dereferenced() {
let mut value = value.clone();
value.replace_all_ids(replacement_map);
referenced_ids.extend(value.referenced_ids().cloned());
caller_mem_region.insert_at_byte_index(value, *index);
}
} else {
self.log_debug(
Err(anyhow!("Unexpected occurrence of global variables.")),
Some(call_tid),
);
}
}
caller_global_mem.overwrite_mem_region(caller_mem_region);
caller_global_mem.add_ids_to_pointer_targets(referenced_ids);
}
}
/// Generate a list of global indices as a union of the global indices known to caller and callee.
/// The corresponding access patterns are mutably derefenced
/// if and only if they are mutably dereferenced in both the caller and the callee.
///
/// Note that each index is supposed to denote the interval from that index until the next index in the map.
/// This is a heuristic approximation, since we do not know the actual sizes of the global variables here.
fn compute_call_return_global_var_access_intervals(
caller_fn_sig: &FunctionSignature,
callee_fn_sig: &FunctionSignature,
) -> BTreeMap<u64, AccessPattern> {
let caller_mut_indices: BTreeSet<u64> = caller_fn_sig
.global_parameters
.iter()
.filter_map(|(location, access_pattern)| {
if let AbstractLocation::GlobalAddress { address, .. } = location {
if access_pattern.is_mutably_dereferenced() {
return Some(*address);
}
}
None
})
.collect();
let callee_mut_indices: BTreeSet<u64> = callee_fn_sig
.global_parameters
.iter()
.filter_map(|(location, access_pattern)| {
if let AbstractLocation::GlobalAddress { address, .. } = location {
if access_pattern.is_mutably_dereferenced() {
return Some(*address);
}
}
None
})
.collect();
let mut intervals: BTreeMap<u64, AccessPattern> = caller_fn_sig
.global_parameters
.keys()
.chain(callee_fn_sig.global_parameters.keys())
.filter_map(|location| {
if let AbstractLocation::GlobalAddress { address, .. } = location {
Some((*address, AccessPattern::new()))
} else {
None
}
})
.collect();
for (index, access_pattern) in intervals.iter_mut() {
if caller_mut_indices.contains(index) && callee_mut_indices.contains(index) {
access_pattern.set_mutably_dereferenced_flag();
}
}
intervals
}
/// Mark all values in the caller memory object representing global memory,
/// that may have been overwritten by the callee, as potential `Top` values.
fn mark_values_in_caller_global_mem_as_potentially_overwritten(
caller_global_mem_region: &mut MemRegion<Data>,
access_intervals: &BTreeMap<u64, AccessPattern>,
) {
let mut interval_iter = access_intervals.iter().peekable();
while let Some((index, access_pattern)) = interval_iter.next() {
if access_pattern.is_mutably_dereferenced() {
if let Some((next_index, _next_pattern)) = interval_iter.peek() {
caller_global_mem_region.mark_interval_values_as_top(
*index as i64,
(**next_index - 1) as i64,
ByteSize::new(1),
);
} else {
caller_global_mem_region.mark_interval_values_as_top(
*index as i64,
i64::MAX - 1,
ByteSize::new(1),
);
}
}
}
}
#[cfg(test)]
mod tests;