1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
//! Generate control flow graphs out of a program term.
//!
//! The generated graphs follow some basic principles:
//! * **Nodes** denote specific (abstract) points in time during program execution,
//! i.e. information does not change on a node.
//! So a basic block itself is not a node,
//! but the points in time before and after execution of the basic block can be nodes.
//! * **Edges** denote either transitions between the points in time of their start and end nodes during program execution
//! or they denote (artificial) information flow between nodes. See the `CRCallStub` edges of interprocedural control flow graphs
//! for an example of an edge that is only meant for information flow and not actual control flow.
//!
//! # General assumptions
//!
//! The graph construction algorithm assumes
//! that each basic block of the program term ends with zero, one or two jump instructions.
//! In the case of two jump instructions the first one is a conditional jump
//! and the second one is an unconditional jump.
//! Conditional calls are not supported.
//! Missing jump instructions are supported to indicate incomplete information about the control flow,
//! i.e. points where the control flow reconstruction failed.
//! These points are converted to dead ends in the control flow graphs.
//!
//! # Interprocedural control flow graph
//!
//! The function [`get_program_cfg`](fn.get_program_cfg.html) builds an interprocedural control flow graph out of a program term as follows:
//! * Each basic block ([`image`](../../../../../doc/images/node_edge.png)) is converted into two nodes, *BlkStart* and *BlkEnd*,
//! and a *block* edge from *BlkStart* to *BlkEnd*.
//! * Jumps and calls inside the program are converted to *Jump* or *Call* edges from the *BlkEnd* node of their source
//! to the *BlkStart* node of their target (which is the first block of the target function in case of calls).
//! * Calls to library functions ([`image`](../../../../../doc/images/extern_calls.png)) outside the program are converted to *ExternCallStub* edges
//! from the *BlkEnd* node of the callsite to the *BlkStart* node of the basic block the call returns to
//! (if the call returns at all).
//! * Right now indirect calls are handled as if they were extern calls, i.e. an *ExternCallStub* edge is added.
//! This behaviour will change in the future, when better indirect call handling is implemented.
//! * For each in-program call ([`image`](../../../../../doc/images/internal_function_call.png)) and corresponding return jump two nodes and four edges are generated:
//! * An artificial node *CallReturn* and node *CallSource*
//! * A *CRCallStub* edge from the *BlkEnd* node of the callsite to *CallReturn*
//! * A *CRReturnStub* edge from the *BlkEnd* node of the returning from block to *CallReturn*
//! * A *ReturnCombine* edge from *CallReturn* to the *BlkStart* node of the returned to block.
//! * A *CallCombine* edge from the *BlkEnd* node to the *CallSource* node.
//!
//! The artificial *CallReturn* nodes enable enriching the information flowing through a return edge
//! with information recovered from the corresponding callsite during a fixpoint computation.
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::{debug::ToJsonCompact, log::LogMessage};
use std::collections::{HashMap, HashSet};
pub use petgraph::graph::NodeIndex;
use petgraph::{
graph::DiGraph,
visit::{EdgeRef, IntoNodeReferences},
};
/// The graph type of an interprocedural control flow graph
pub type Graph<'a> = DiGraph<Node<'a>, Edge<'a>>;
/// Trait for types that provide access to a control flow graph.
pub trait HasCfg<'a> {
/// Returns a reference to the control flow graph managed by this type.
fn get_cfg(&self) -> &Graph<'a>;
}
/// The node type of an interprocedural control flow graph
///
/// Each node carries a pointer to its associated block with it.
/// For `CallReturn`nodes the associated blocks are both the `CallSource`block (containing the call instruction)
/// and the returning-from block (containing the return instruction).
///
/// For `CallSource`nodes the associated block is the callsite block (source)
/// and the target block of the call.
///
/// Basic blocks are allowed to be contained in more than one `Sub`.
/// In the control flow graph such basic blocks occur once per subroutine they are contained in.
/// For this reason, the nodes also carry a pointer to the corresponding subroutine with them
/// to allow unambigous node identification.
#[derive(Serialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Node<'a> {
/// A node corresponding to the start of a basic block,
/// i.e. to the point in time just before the execution of the block.
BlkStart(&'a Term<Blk>, &'a Term<Sub>),
/// A node corresponding to the end of the basic block,
/// i.e. to the point in time just after the execution of all `Def` instructions in the block
/// but before execution of the jump instructions at the end of the block.
BlkEnd(&'a Term<Blk>, &'a Term<Sub>),
/// An artificial node. See the module-level documentation for more information.
CallReturn {
/// The block containing the callsite of the call.
call: (&'a Term<Blk>, &'a Term<Sub>),
/// The block that the called functions returns to.
return_: (&'a Term<Blk>, &'a Term<Sub>),
},
/// An artificial node. See the module-level documentation for more information.
CallSource {
/// The block containing the callsite of the call
source: (&'a Term<Blk>, &'a Term<Sub>),
/// The block containing the target of the call, i.e. the first block of the target function.
target: (&'a Term<Blk>, &'a Term<Sub>),
},
}
impl<'a> Node<'a> {
/// Get the block corresponding to the node for `BlkStart` and `BlkEnd` nodes.
/// panics if called on a `CallReturn` node.
pub fn get_block(&self) -> &'a Term<Blk> {
use Node::*;
match self {
BlkStart(blk, _sub) | BlkEnd(blk, _sub) => blk,
CallSource { .. } | CallReturn { .. } => {
panic!("get_block() is undefined for CallReturn and CallSource nodes")
}
}
}
/// Get the sub corresponding to the node for `BlkStart` and `BlkEnd` nodes.
/// panics if called on a `CallReturn` node.
pub fn get_sub(&self) -> &'a Term<Sub> {
use Node::*;
match self {
BlkStart(_blk, sub) | BlkEnd(_blk, sub) => sub,
CallSource { .. } | CallReturn { .. } => {
panic!("get_sub() is undefined for CallReturn and CallSource nodes")
}
}
}
}
impl<'a> std::fmt::Display for Node<'a> {
fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Self::BlkStart(block, sub) => {
write!(formatter, "BlkStart @ {} (sub {})", block.tid, sub.tid)
}
Self::BlkEnd(block, sub) => {
write!(formatter, "BlkEnd @ {} (sub {})", block.tid, sub.tid)
}
Self::CallReturn { call, return_ } => write!(
formatter,
"CallReturn @ {} (sub {}) (caller @ {} (sub {}))",
return_.0.tid, return_.1.tid, call.0.tid, call.1.tid
),
Self::CallSource { source, target } => write!(
formatter,
"CallSource @ {} (sub {}) (caller @ {} (sub {}))",
target.0.tid, target.1.tid, source.0.tid, source.1.tid
),
}
}
}
/// The edge type of an interprocedural fixpoint graph.
///
/// Where applicable the edge carries a reference to the corresponding jump instruction.
/// For `CRCombine` edges the corresponding jump is the call and not the return jump.
/// Intraprocedural jumps carry a second optional reference,
/// which is only set if the jump directly follows an conditional jump,
/// i.e. it represents the "conditional jump not taken" branch.
/// In this case the other jump reference points to the untaken conditional jump.
#[derive(Serialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Edge<'a> {
/// An edge between the `BlkStart` and `BlkEnd` nodes of a basic block.
Block,
/// An edge corresponding to an intraprocedural jump instruction.
/// If the jump is only taken if a previous conditional jump is not taken,
/// then a reference to the untaken conditional jump is also added to the jump label.
Jump(&'a Term<Jmp>, Option<&'a Term<Jmp>>),
/// An edge corresponding to a function call instruction.
/// Only generated for calls to functions inside the binary.
/// See the module-level documentation for more information.
Call(&'a Term<Jmp>),
/// An edge corresponding to a call to a function not contained in the binary,
/// i.e. the target is located in a shared object loaded by the binary.
/// The edge goes directly from the callsite to the return-to-site inside the caller.
ExternCallStub(&'a Term<Jmp>),
/// An artificial edge. See the module-level documentation for more information.
CrCallStub,
/// An artificial edge. See the module-level documentation for more information.
CrReturnStub,
/// An artificial edge to combine intra- and interprocedural data flows at the callsite of calls.
/// See the module-level documentation for more information.
CallCombine(&'a Term<Jmp>),
/// An artificial edge to combine intra- and interprocedural data flows at the return-to site of calls.
/// See the module-level documentation for more information.
ReturnCombine(&'a Term<Jmp>),
}
impl<'a> std::fmt::Display for Edge<'a> {
fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Self::Block => {
write!(formatter, "Block")
}
Self::Jump(..) => {
write!(formatter, "Jump")
}
Self::Call { .. } => write!(formatter, "Call",),
Self::ExternCallStub { .. } => write!(formatter, "ExternCallStub",),
Self::CrCallStub => write!(formatter, "CrCallStub"),
Self::CrReturnStub => write!(formatter, "CrReturnStub"),
Self::CallCombine(..) => write!(formatter, "CallCombine"),
Self::ReturnCombine(..) => write!(formatter, "ReturnCombine"),
}
}
}
/// A builder struct for building graphs
struct GraphBuilder<'a> {
program: &'a Term<Program>,
extern_subs: HashSet<Tid>,
graph: Graph<'a>,
/// Denotes the NodeIndices of possible call targets
call_targets: HashMap<Tid, (NodeIndex, NodeIndex)>,
/// Denotes the NodeIndices of possible intraprocedural jump targets.
/// The keys are of the form (block_tid, sub_tid).
/// The values are of the form (BlkStart-node-index, BlkEnd-node-index).
jump_targets: HashMap<(Tid, Tid), (NodeIndex, NodeIndex)>,
/// for each function the list of return addresses of the corresponding call sites
return_addresses: HashMap<Tid, Vec<(NodeIndex, NodeIndex)>>,
/// A list of `BlkEnd` nodes for which outgoing edges still have to be added to the graph.
block_worklist: Vec<NodeIndex>,
/// List of `LogMessage` generated by `build` function.
log_messages: Vec<LogMessage>,
}
impl<'a> GraphBuilder<'a> {
/// create a new builder with an emtpy graph
pub fn new(program: &'a Term<Program>, extern_subs: HashSet<Tid>) -> GraphBuilder<'a> {
GraphBuilder {
program,
extern_subs,
graph: Graph::new(),
call_targets: HashMap::new(),
jump_targets: HashMap::new(),
return_addresses: HashMap::new(),
block_worklist: Vec::new(),
log_messages: Vec::new(),
}
}
/// Add start and end nodes of a block and the connecting edge.
/// Also add the end node to the `block_worklist`.
fn add_block(&mut self, block: &'a Term<Blk>, sub: &'a Term<Sub>) -> (NodeIndex, NodeIndex) {
let start = self.graph.add_node(Node::BlkStart(block, sub));
let end = self.graph.add_node(Node::BlkEnd(block, sub));
self.jump_targets
.insert((block.tid.clone(), sub.tid.clone()), (start, end));
self.graph.add_edge(start, end, Edge::Block);
self.block_worklist.push(end);
(start, end)
}
/// Add all blocks of the program to the graph.
///
/// Each block is only added once,
/// i.e. for blocks contained in more than one function the extra nodes have to be added separately later.
/// The `sub` a block is associated with is the `sub` that the block is contained in in the `program` struct.
fn add_program_blocks(&mut self) {
let subs = self.program.term.subs.values();
for sub in subs {
for block in sub.term.blocks.iter() {
self.add_block(block, sub);
}
}
}
/// add all subs to the call targets so that call instructions can be linked to the starting block of the corresponding sub.
fn add_subs_to_call_targets(&mut self) {
for sub in self.program.term.subs.values() {
if !sub.term.blocks.is_empty() {
let start_block = &sub.term.blocks[0];
let target_index = self.jump_targets[&(start_block.tid.clone(), sub.tid.clone())];
self.call_targets.insert(sub.tid.clone(), target_index);
} else {
self.log_messages.push(LogMessage::new_info(format!(
"{} contains no blocks",
sub.tid
)))
}
}
}
/// Add an intraprocedural jump edge from the `source` node to the `target_tid`.
/// If no node corresponding to the `target_tid` exists,
/// new nodes corresponding to the (target block, current sub) combination will be created.
fn add_intraprocedural_edge(
&mut self,
source: NodeIndex,
target_tid: &Tid,
jump: &'a Term<Jmp>,
untaken_conditional: Option<&'a Term<Jmp>>,
) {
let sub_term = match self.graph[source] {
Node::BlkEnd(_, sub_term) => sub_term,
_ => panic!(),
};
if let Some((target_node, _)) = self
.jump_targets
.get(&(target_tid.clone(), sub_term.tid.clone()))
{
self.graph
.add_edge(source, *target_node, Edge::Jump(jump, untaken_conditional));
} else {
let target_block = self.program.term.find_block(target_tid).unwrap();
let (target_node, _) = self.add_block(target_block, sub_term);
self.graph
.add_edge(source, target_node, Edge::Jump(jump, untaken_conditional));
}
}
/// Read in target hints for indirect intraprocedural jumps from the source block
/// and add intraprocedural jump edges for them to the graph.
///
/// The function assumes (but does not check) that the `jump` is an intraprocedural indirect jump.
fn add_indirect_jumps(
&mut self,
source: NodeIndex,
jump: &'a Term<Jmp>,
untaken_conditional: Option<&'a Term<Jmp>>,
) {
let source_block = match self.graph[source] {
Node::BlkEnd(source_block, _) => source_block,
_ => panic!(),
};
for target_tid in source_block.term.indirect_jmp_targets.iter() {
self.add_intraprocedural_edge(source, target_tid, jump, untaken_conditional);
}
}
/// add call edges and interprocedural jump edges for a specific jump term to the graph
fn add_jump_edge(
&mut self,
source: NodeIndex,
jump: &'a Term<Jmp>,
untaken_conditional: Option<&'a Term<Jmp>>,
) {
let (source_block, sub_term) = match self.graph[source] {
Node::BlkEnd(source_block, sub_term) => (source_block, sub_term),
_ => panic!(),
};
match &jump.term {
Jmp::Branch(tid)
| Jmp::CBranch {
target: tid,
condition: _,
} => {
self.add_intraprocedural_edge(source, tid, jump, untaken_conditional);
}
Jmp::BranchInd(_) => {
self.add_indirect_jumps(source, jump, untaken_conditional);
}
Jmp::Call { target, return_ } => {
// first make sure that the return block exists
let return_to_node_option = if let Some(return_tid) = return_ {
if let Some((return_to_node, _)) = self
.jump_targets
.get(&(return_tid.clone(), sub_term.tid.clone()))
{
Some(*return_to_node)
} else {
let return_block = self.program.term.find_block(return_tid).unwrap();
Some(self.add_block(return_block, sub_term).0)
}
} else {
None
};
// now add the call edge
if self.extern_subs.contains(target) {
if let Some(return_to_node) = return_to_node_option {
self.graph
.add_edge(source, return_to_node, Edge::ExternCallStub(jump));
}
} else {
let mut call_source_node: Option<NodeIndex> = None;
if let Some((target_node, _)) = self.call_targets.get(target) {
let (target_block, target_sub) = match self.graph[*target_node] {
Node::BlkStart(target_block, target_sub) => (target_block, target_sub),
_ => panic!(),
};
call_source_node = Some(self.graph.add_node(Node::CallSource {
source: (source_block, sub_term),
target: (target_block, target_sub),
}));
self.graph.add_edge(
source,
*call_source_node.as_ref().unwrap(),
Edge::CallCombine(jump),
);
self.graph.add_edge(
*call_source_node.as_ref().unwrap(),
*target_node,
Edge::Call(jump),
);
} // TODO: Log message for the else-case?
if let Some(return_node) = return_to_node_option {
if let Some(cs_node) = call_source_node {
self.return_addresses
.entry(target.clone())
.and_modify(|vec| vec.push((cs_node, return_node)))
.or_insert_with(|| vec![(cs_node, return_node)]);
}
}
}
}
Jmp::CallInd { target: _, return_ } => {
// Right now we only add an artificial extern call stub for indirect calls.
// TODO: Handle cases where the call target may be known.
if let Some(return_tid) = return_ {
let return_to_node = if let Some((return_to_node, _)) = self
.jump_targets
.get(&(return_tid.clone(), sub_term.tid.clone()))
{
*return_to_node
} else {
let return_block = self.program.term.find_block(return_tid).unwrap();
self.add_block(return_block, sub_term).0
};
self.graph
.add_edge(source, return_to_node, Edge::ExternCallStub(jump));
}
}
Jmp::CallOther {
description: _,
return_: _,
} => {
// TODO: Decide how to represent CallOther edges.
// Right now they are dead ends in the control flow graph.
}
Jmp::Return(_) => {} // return edges are handled in a different function
}
}
/// Add all outgoing edges generated by calls and intraprocedural jumps for a specific block to the graph.
/// Return edges are *not* added by this function.
fn add_outgoing_edges(&mut self, node: NodeIndex, block: &'a Term<Blk>) {
let jumps = block.term.jmps.as_slice();
match jumps {
[] => (), // Blocks without jumps are dead ends corresponding to control flow reconstruction errors or user-inserted dead ends.
[jump] => self.add_jump_edge(node, jump, None),
[if_jump, else_jump] => {
self.add_jump_edge(node, if_jump, None);
self.add_jump_edge(node, else_jump, Some(if_jump));
}
_ => panic!("Basic block with more than 2 jumps encountered"),
}
}
/// For each return instruction and each corresponding call, add the following to the graph:
/// - a CallReturn node.
/// - edges from the callsite and from the returning-from site to the CallReturn node
/// - an edge from the CallReturn node to the return-to site
fn add_call_return_node_and_edges(
&mut self,
return_from_sub: &'a Term<Sub>,
return_source: NodeIndex,
) {
if !self.return_addresses.contains_key(&return_from_sub.tid) {
return;
}
for (call_node, return_to_node) in self.return_addresses[&return_from_sub.tid].iter() {
let (call_block, caller_sub) = match self.graph[*call_node] {
Node::CallSource { source, .. } => source,
_ => panic!(),
};
let return_from_block = self.graph[return_source].get_block();
let call_term = call_block
.term
.jmps
.iter()
.find(|jump| matches!(jump.term, Jmp::Call { .. }))
.unwrap();
let return_combine_node = self.graph.add_node(Node::CallReturn {
call: (call_block, caller_sub),
return_: (return_from_block, return_from_sub),
});
self.graph
.add_edge(*call_node, return_combine_node, Edge::CrCallStub);
self.graph
.add_edge(return_source, return_combine_node, Edge::CrReturnStub);
self.graph.add_edge(
return_combine_node,
*return_to_node,
Edge::ReturnCombine(call_term),
);
}
}
/// Add all return instruction related edges and nodes to the graph (for all return instructions).
fn add_return_edges(&mut self) {
let mut return_from_vec = Vec::new();
for node in self.graph.node_indices() {
if let Node::BlkEnd(block, sub) = self.graph[node] {
if block
.term
.jmps
.iter()
.any(|jmp| matches!(jmp.term, Jmp::Return(_)))
{
return_from_vec.push((node, sub));
}
}
}
for (return_from_node, return_from_sub) in return_from_vec {
self.add_call_return_node_and_edges(return_from_sub, return_from_node);
}
}
/// Add all non-return-instruction-related jump edges to the graph.
fn add_jump_and_call_edges(&mut self) {
while let Some(node) = self.block_worklist.pop() {
match self.graph[node] {
Node::BlkEnd(block, _) => self.add_outgoing_edges(node, block),
_ => panic!(),
}
}
}
/// Build the interprocedural control flow graph.
pub fn build(&mut self) -> Graph<'a> {
self.add_program_blocks();
self.add_subs_to_call_targets();
self.add_jump_and_call_edges();
self.add_return_edges();
self.graph.clone()
}
}
/// Build the interprocedural control flow graph for a program term.
pub fn get_program_cfg(program: &Term<Program>) -> Graph {
get_program_cfg_with_logs(program).0
}
/// Build the interprocedural control flow graph for a program term with log messages created by building.
pub fn get_program_cfg_with_logs(program: &Term<Program>) -> (Graph, Vec<LogMessage>) {
let extern_subs = program.term.extern_symbols.keys().cloned().collect();
let mut builder = GraphBuilder::new(program, extern_subs);
(builder.build(), builder.log_messages)
}
/// Returns a map from function TIDs to the node index of the `BlkStart` node of the first block in the function.
pub fn get_entry_nodes_of_subs(graph: &Graph) -> HashMap<Tid, NodeIndex> {
let mut sub_to_entry_node_map: HashMap<Tid, NodeIndex> = HashMap::new();
for node in graph.node_indices() {
if let Node::BlkStart(block, sub) = graph[node] {
if let Some(entry_block) = sub.term.blocks.first() {
if block.tid == entry_block.tid {
sub_to_entry_node_map.insert(sub.tid.clone(), node);
}
}
}
}
sub_to_entry_node_map
}
impl ToJsonCompact for Graph<'_> {
fn to_json_compact(&self) -> serde_json::Value {
let mut map = serde_json::Map::new();
let mut node_counts_map = serde_json::Map::new();
let mut edge_counts_map = serde_json::Map::new();
let mut nodes_map = serde_json::Map::new();
let mut edges_map = serde_json::Map::new();
let total_nodes = self.node_count();
let mut blk_start_nodes = 0u64;
let mut blk_end_nodes = 0u64;
let mut call_return_nodes = 0u64;
let mut call_source_nodes = 0u64;
for (idx, node) in self.node_references() {
nodes_map.insert(idx.index().to_string(), node.to_string().into());
match node {
Node::BlkStart(..) => blk_start_nodes += 1,
Node::BlkEnd(..) => blk_end_nodes += 1,
Node::CallReturn { .. } => call_return_nodes += 1,
Node::CallSource { .. } => call_source_nodes += 1,
}
}
node_counts_map.insert("total".into(), total_nodes.into());
node_counts_map.insert("blk_start".into(), blk_start_nodes.into());
node_counts_map.insert("blk_end".into(), blk_end_nodes.into());
node_counts_map.insert("call_return".into(), call_return_nodes.into());
node_counts_map.insert("call_source".into(), call_source_nodes.into());
let total_edges = self.edge_count();
let mut block_edges = 0u64;
let mut jump_edges = 0u64;
let mut call_edges = 0u64;
let mut extern_call_stub_edges = 0u64;
let mut cr_call_stub_edges = 0u64;
let mut cr_return_stub_edges = 0u64;
let mut call_combine_edges = 0u64;
let mut return_combine_edges = 0u64;
for edge in self.edge_references() {
edges_map.insert(
format!("{} -> {}", edge.source().index(), edge.target().index()),
edge.weight().to_string().into(),
);
match edge.weight() {
Edge::Block => block_edges += 1,
Edge::Jump(..) => jump_edges += 1,
Edge::Call(..) => call_edges += 1,
Edge::ExternCallStub(..) => extern_call_stub_edges += 1,
Edge::CrCallStub => cr_call_stub_edges += 1,
Edge::CrReturnStub => cr_return_stub_edges += 1,
Edge::CallCombine(..) => call_combine_edges += 1,
Edge::ReturnCombine(..) => return_combine_edges += 1,
}
}
edge_counts_map.insert("total".into(), total_edges.into());
edge_counts_map.insert("block".into(), block_edges.into());
edge_counts_map.insert("jump".into(), jump_edges.into());
edge_counts_map.insert("call".into(), call_edges.into());
edge_counts_map.insert("extern_call_stub".into(), extern_call_stub_edges.into());
edge_counts_map.insert("cr_call_stub".into(), cr_call_stub_edges.into());
edge_counts_map.insert("cr_return_stub".into(), cr_return_stub_edges.into());
edge_counts_map.insert("call_combine".into(), call_combine_edges.into());
edge_counts_map.insert("return_combine".into(), return_combine_edges.into());
map.insert("node_counts".into(), node_counts_map.into());
map.insert("edge_counts".into(), edge_counts_map.into());
map.insert("nodes".into(), nodes_map.into());
map.insert("edges".into(), edges_map.into());
serde_json::Value::Object(map)
}
}
#[cfg(test)]
mod tests {
use crate::expr;
use super::*;
use std::collections::{BTreeMap, BTreeSet};
use std::iter::FromIterator;
fn mock_program() -> Term<Program> {
let call_term = Term {
tid: Tid::new("call".to_string()),
term: Jmp::Call {
target: Tid::new("sub2"),
return_: Some(Tid::new("sub1_blk2")),
},
};
let return_term = Term {
tid: Tid::new("return".to_string()),
term: Jmp::Return(expr!("0:8")), // The return term does not matter
};
let jmp = Jmp::Branch(Tid::new("sub1_blk1"));
let jmp_term = Term {
tid: Tid::new("jump"),
term: jmp,
};
let sub1_blk1 = Term {
tid: Tid::new("sub1_blk1"),
term: Blk {
defs: Vec::new(),
jmps: vec![call_term],
indirect_jmp_targets: Vec::new(),
},
};
let sub1_blk2 = Term {
tid: Tid::new("sub1_blk2"),
term: Blk {
defs: Vec::new(),
jmps: vec![jmp_term],
indirect_jmp_targets: Vec::new(),
},
};
let sub1 = Term {
tid: Tid::new("sub1"),
term: Sub {
name: "sub1".to_string(),
blocks: vec![sub1_blk1, sub1_blk2],
calling_convention: None,
},
};
let cond_jump = Jmp::CBranch {
target: Tid::new("sub1_blk1"),
condition: expr!("0:1"),
};
let cond_jump_term = Term {
tid: Tid::new("cond_jump"),
term: cond_jump,
};
let jump_term_2 = Term {
tid: Tid::new("jump2"),
term: Jmp::Branch(Tid::new("sub2_blk2")),
};
let sub2_blk1 = Term {
tid: Tid::new("sub2_blk1"),
term: Blk {
defs: Vec::new(),
jmps: vec![cond_jump_term, jump_term_2],
indirect_jmp_targets: Vec::new(),
},
};
let sub2_blk2 = Term {
tid: Tid::new("sub2_blk2"),
term: Blk {
defs: Vec::new(),
jmps: vec![return_term],
indirect_jmp_targets: Vec::new(),
},
};
let sub2 = Term {
tid: Tid::new("sub2"),
term: Sub {
name: "sub2".to_string(),
blocks: vec![sub2_blk1, sub2_blk2],
calling_convention: None,
},
};
let program = Term {
tid: Tid::new("program"),
term: Program {
subs: BTreeMap::from_iter([(sub1.tid.clone(), sub1), (sub2.tid.clone(), sub2)]),
extern_symbols: BTreeMap::new(),
entry_points: BTreeSet::new(),
address_base_offset: 0,
},
};
program
}
#[test]
fn create_program_cfg() {
let program = mock_program();
let graph = get_program_cfg(&program);
println!("{}", serde_json::to_string_pretty(&graph).unwrap());
assert_eq!(graph.node_count(), 16);
assert_eq!(graph.edge_count(), 20);
}
#[test]
fn add_indirect_jumps() {
let indirect_jmp_term = Term {
tid: Tid::new("indrect_jmp".to_string()),
term: Jmp::BranchInd(expr!("0x1000:4")), // At the moment the expression does not matter
};
let mut blk_tid = Tid::new("blk_00001000");
blk_tid.address = "00001000".to_string();
let blk_term = Term {
tid: blk_tid.clone(),
term: Blk {
defs: Vec::new(),
jmps: vec![indirect_jmp_term],
indirect_jmp_targets: vec![blk_tid],
},
};
let sub_term = Term {
tid: Tid::new("sub"),
term: Sub {
name: "sub".to_string(),
blocks: vec![blk_term],
calling_convention: None,
},
};
let mut program = Program::mock_x64();
program.subs.insert(sub_term.tid.clone(), sub_term);
let program_term = Term {
tid: Tid::new("program".to_string()),
term: program,
};
let graph = get_program_cfg(&program_term);
assert_eq!(graph.node_count(), 2);
assert_eq!(graph.edge_count(), 2);
}
}