1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
//! A fixpoint algorithm computing parameters of functions and their access patterns.
//!
//! The fixpoint algorithm tracks the values of registers and the stack,
//! although only stack accesses with known, constant offset are processed.
//! Accesses to potential function parameters are collected together with the type of the access
//! (is the value read, dereferenced for read access or dereferenced for write access).
//! Accesses to constant addresses that may correspond to global variables are also tracked.
//!
//! For values that are not directly tracked,
//! the algorithm tracks the abstract location that describes how the pointer to that value was computed.
//! This enables tracking of nested parameter objects
//! without actually tracking the memory objects where these objects are located.
//!
//! Known limitations of the analysis:
//! * The analysis is an overapproximation in the sense that it may generate more input parameters
//! than actually exist in some cases.
//! * Only registers that are potential parameter registers in the standard calling convention
//! of the CPU architecture are considered as potential parameter registers.
//! For functions that use other registers
//! than those in the standard calling convention for parameter passing
//! the results of this analysis will be wrong.
//! * Parameters that are used as input values for variadic functions may be missed.
//! Some variadic functions are stubbed, i.e. parameter recognition should work for these.
//! But not all variadic functions are stubbed.
//! * For floating point parameter registers the base register is detected as a parameter,
//! although only a smaller sub-register is the actual parameter in many cases.
//! Also, if a function uses sub-registers of floating point registers as local variables,
//! the registers may be incorrectly flagged as input parameters.
//! * Tracking of nested parameters via their abstract locations is an unsound, heuristic approach,
//! as the analysis does not keep track of when such nested pointers might get overwritten.
//! Nevertheless, it should result in an overapproximation of parameters and their access patterns in most cases.
//! * The nesting depth for tracked nested parameters is limited
//! to avoid generating infinitely many parameters for recursive types like linked lists.
//! * For arrays no parameters should be created for the array elements.
//! However, if only a particular element in an array is accessed without iteration over the array,
//! then a parameter might be generated for that element.
use crate::abstract_domain::AbstractDomain;
use crate::abstract_domain::AbstractLocation;
use crate::abstract_domain::AbstractMemoryLocation;
use crate::analysis::fixpoint::Computation;
use crate::analysis::forward_interprocedural_fixpoint::create_computation;
use crate::analysis::forward_interprocedural_fixpoint::GeneralizedContext;
use crate::analysis::graph::*;
use crate::analysis::interprocedural_fixpoint_generic::NodeValue;
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::log::LogMessage;
use std::collections::BTreeMap;
mod context;
use context::*;
mod state;
use state::State;
mod access_pattern;
pub use access_pattern::AccessPattern;
mod global_var_propagation;
use global_var_propagation::propagate_globals;
pub mod stubs;
/// Generate the computation object for the fixpoint computation
/// and set the node values for all function entry nodes.
fn generate_fixpoint_computation<'a>(
project: &'a Project,
graph: &'a Graph,
pointer_recursion_depth_limit: u64,
) -> Computation<GeneralizedContext<'a, Context<'a>>> {
let context = Context::new(project, graph);
let mut computation = create_computation(context, None);
// Set the node values for all function entry nodes.
for node in graph.node_indices() {
if let Node::BlkStart(block, sub) = graph[node] {
if let Some(entry_block) = sub.term.blocks.first() {
if entry_block.tid == block.tid {
// The node of a function entry point
let calling_convention = project
.get_specific_calling_convention(&sub.term.calling_convention)
.expect("No standard calling convention found.");
let mut fn_start_state = State::new(
&sub.tid,
&project.stack_pointer_register,
calling_convention,
pointer_recursion_depth_limit,
);
if project.cpu_architecture.contains("MIPS") {
let _ = fn_start_state
.set_mips_link_register(&sub.tid, project.stack_pointer_register.size);
}
computation.set_node_value(node, NodeValue::Value(fn_start_state))
}
}
}
}
computation
}
/// Extract the function signatures from the computed fixpoint.
///
/// This function needs to merge the signatures at all nodes corresponding to a function
/// to ensure that parameter accesses on non-returning execution paths of a function
/// are also recognized in the function signature.
fn extract_fn_signatures_from_fixpoint<'a>(
project: &'a Project,
graph: &'a Graph,
fixpoint: Computation<GeneralizedContext<'a, Context<'a>>>,
) -> BTreeMap<Tid, FunctionSignature> {
let mut fn_sig_map: BTreeMap<Tid, FunctionSignature> = project
.program
.term
.subs
.keys()
.map(|tid| (tid.clone(), FunctionSignature::new()))
.collect();
for node in graph.node_indices() {
match fixpoint.get_node_value(node) {
None => (),
Some(NodeValue::Value(state)) => {
let fn_sig = fn_sig_map
.get_mut(state.get_current_function_tid())
.unwrap();
fn_sig.merge_with_fn_sig_of_state(state);
}
Some(NodeValue::CallFlowCombinator {
call_stub,
interprocedural_flow,
}) => {
if let Some(state) = call_stub {
let fn_sig = fn_sig_map
.get_mut(state.get_current_function_tid())
.unwrap();
fn_sig.merge_with_fn_sig_of_state(state);
}
if let Some(state) = interprocedural_flow {
let fn_sig = fn_sig_map
.get_mut(state.get_current_function_tid())
.unwrap();
fn_sig.merge_with_fn_sig_of_state(state);
}
}
}
}
fn_sig_map
}
/// Compute the function signatures for all functions in the project.
///
/// Returns a map from the function TIDs to their signatures,
/// and a list of log and debug messages recorded during the computation of the signatures.
///
/// For more information on the used algorithm see the module-level documentation.
pub fn compute_function_signatures<'a>(
project: &'a Project,
graph: &'a Graph,
) -> (BTreeMap<Tid, FunctionSignature>, Vec<LogMessage>) {
let max_pointer_recursion_depth_limit: u64 = 2;
// We gradually increase the recursion depth limit used in the fixpoint computation.
// The idea is that for array accesses the offset has time to converge to `Top` before IDs for nested objects are created.
// Otherwise the algorithm would generate an object for the first element of an array
// before it can check that it is an array access that we want to ignore.
let mut computation = generate_fixpoint_computation(project, graph, 0);
computation.compute_with_max_steps(100);
for pointer_recursion_limit in 1..=max_pointer_recursion_depth_limit {
for node_value in computation.node_values_mut() {
match node_value {
NodeValue::Value(state) => {
state.set_pointer_recursion_depth_limit(pointer_recursion_limit)
}
NodeValue::CallFlowCombinator {
call_stub,
interprocedural_flow,
} => {
for state in call_stub.iter_mut() {
state.set_pointer_recursion_depth_limit(pointer_recursion_limit);
}
for state in interprocedural_flow.iter_mut() {
state.set_pointer_recursion_depth_limit(pointer_recursion_limit);
}
}
}
}
computation.compute_with_max_steps(100);
}
let mut fn_sig_map = extract_fn_signatures_from_fixpoint(project, graph, computation);
// Sanitize the parameters
let mut logs = Vec::new();
for (fn_tid, fn_sig) in fn_sig_map.iter_mut() {
let info_log = fn_sig.sanitize(project);
for log in info_log {
logs.push(
LogMessage::new_info(log)
.location(fn_tid.clone())
.source("Function Signature Analysis"),
)
}
}
// Propagate globals in bottom-up direction in the call graph
propagate_globals(project, &mut fn_sig_map, &mut logs);
(fn_sig_map, logs)
}
/// The signature of a function.
/// Currently only contains information on the parameters of a function and their access patterns.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct FunctionSignature {
/// The parameters of the function together with their access patterns.
pub parameters: BTreeMap<AbstractLocation, AccessPattern>,
/// Values in writeable global memory accessed by the function.
pub global_parameters: BTreeMap<AbstractLocation, AccessPattern>,
}
impl FunctionSignature {
/// Generate an empty function signature.
pub fn new() -> Self {
Self {
parameters: BTreeMap::new(),
global_parameters: BTreeMap::new(),
}
}
/// The returned number is the maximum of stack offset plus parameter size
/// taken over all stack parameters in the function signature.
pub fn get_stack_params_total_size(&self, stack_register: &Variable) -> i64 {
let mut stack_params_total_size: i64 = 0;
for param in self.parameters.keys() {
if let AbstractLocation::Pointer(var, mem_location) = param {
if var == stack_register {
match mem_location {
AbstractMemoryLocation::Location { offset, size } => {
stack_params_total_size = std::cmp::max(
stack_params_total_size,
offset + (u64::from(*size) as i64),
);
}
AbstractMemoryLocation::Pointer { offset, target: _ } => {
stack_params_total_size = std::cmp::max(
stack_params_total_size,
offset + (u64::from(stack_register.size) as i64),
);
}
}
}
}
}
stack_params_total_size
}
/// Merge the parameter list and the global parameter list of `self` with the given lists.
fn merge_parameter_lists(
&mut self,
params: &[(&AbstractLocation, AccessPattern)],
global_params: &[(&AbstractLocation, AccessPattern)],
) {
for (arg, sig_new) in params {
if let Some(sig_self) = self.parameters.get_mut(arg) {
*sig_self = sig_self.merge(sig_new);
} else {
self.parameters.insert((*arg).clone(), *sig_new);
}
}
for (address, sig_new) in global_params {
if let Some(sig_self) = self.global_parameters.get_mut(address) {
*sig_self = sig_self.merge(sig_new);
} else {
self.global_parameters.insert((*address).clone(), *sig_new);
}
}
}
/// Merge the function signature with the signature extracted from the given state.
fn merge_with_fn_sig_of_state(&mut self, state: &State) {
let params = state.get_params_of_current_function();
let global_params = state.get_global_mem_params_of_current_function();
self.merge_parameter_lists(¶ms, &global_params);
}
/// Sanitize the function signature:
/// * Remove the return address from the list of stack parameters for x86-based architectures.
/// * Check for unaligned stack parameters or stack parameters that are not pointer-sized
/// and return an info message if one is found.
/// This may indicate an error in the analysis
/// as no proper sanitation pass is implemented for such cases yet.
/// * Merge intersecting stack parameters
fn sanitize(&mut self, project: &Project) -> Vec<String> {
match project.cpu_architecture.as_str() {
"x86" | "x86_32" | "x86_64" => {
let return_addr_location = AbstractLocation::from_stack_position(
&project.stack_pointer_register,
0,
project.get_pointer_bytesize(),
);
self.parameters.remove(&return_addr_location);
}
_ => (),
}
// FIXME: We check for intersecting stack parameter register, but not for intersecting nested parameters.
// We should add a check for these to generate log messages (but probably without trying to merge such parameters)
self.merge_intersecting_stack_parameters(&project.stack_pointer_register);
self.check_for_unaligned_stack_params(&project.stack_pointer_register)
}
/// Return a log message for every unaligned stack parameter
/// or a stack parameter of different size than the generic pointer size is found.
fn check_for_unaligned_stack_params(&self, stack_register: &Variable) -> Vec<String> {
let mut log_messages: Vec<String> = vec![];
for param in self.parameters.keys() {
if let Some(offset) = get_offset_if_simple_stack_param(param, stack_register) {
if param.bytesize() != stack_register.size {
log_messages.push("Unexpected stack parameter size".into());
}
if offset % u64::from(stack_register.size) as i64 != 0 {
log_messages.push("Unexpected stack parameter alignment".into());
}
}
}
log_messages
}
/// Merges intersecting stack parameters by joining them into one stack parameter.
///
/// Only non-nested stack parameters are joined by this function.
fn merge_intersecting_stack_parameters(&mut self, stack_register: &Variable) {
let stack_params: BTreeMap<(i64, ByteSize), (AbstractLocation, AccessPattern)> = self
.parameters
.iter()
.filter_map(|(location, access_pattern)| {
get_offset_if_simple_stack_param(location, stack_register).map(|offset| {
(
(offset, location.bytesize()),
(location.clone(), *access_pattern),
)
})
})
.collect();
let mut current_param: Option<(i64, i64, AccessPattern)> = None;
for ((offset, _), (param, access_pattern)) in stack_params.into_iter() {
self.parameters.remove(¶m);
if let Some((cur_offset, cur_size, cur_access_pattern)) = current_param {
if offset < cur_offset + cur_size {
let merged_size = std::cmp::max(
cur_size,
offset - cur_offset + u64::from(param.bytesize()) as i64,
);
let merged_access_pattern = cur_access_pattern.merge(&access_pattern);
current_param = Some((cur_offset, merged_size, merged_access_pattern));
} else {
self.parameters.insert(
generate_simple_stack_param(
cur_offset,
ByteSize::new(cur_size as u64),
stack_register,
),
cur_access_pattern,
);
current_param =
Some((offset, u64::from(param.bytesize()) as i64, access_pattern));
}
} else {
current_param = Some((offset, u64::from(param.bytesize()) as i64, access_pattern));
}
}
if let Some((cur_offset, cur_size, cur_access_pattern)) = current_param {
self.parameters.insert(
generate_simple_stack_param(
cur_offset,
ByteSize::new(cur_size as u64),
stack_register,
),
cur_access_pattern,
);
}
}
}
impl Default for FunctionSignature {
fn default() -> Self {
Self::new()
}
}
impl FunctionSignature {
/// Generate a compact JSON-representation of the function signature for pretty printing.
#[allow(dead_code)]
pub fn to_json_compact(&self) -> serde_json::Value {
let mut json_map = serde_json::Map::new();
let mut param_map = serde_json::Map::new();
for (param, pattern) in self.parameters.iter() {
param_map.insert(
format!("{param}"),
serde_json::Value::String(format!("{pattern}")),
);
}
json_map.insert(
"Parameters".to_string(),
serde_json::Value::Object(param_map),
);
let mut global_param_map = serde_json::Map::new();
for (param, pattern) in self.global_parameters.iter() {
global_param_map.insert(
format!("{param}"),
serde_json::Value::String(format!("{pattern}")),
);
}
json_map.insert(
"Globals".to_string(),
serde_json::Value::Object(global_param_map),
);
serde_json::Value::Object(json_map)
}
}
/// If the abstract location is a location on the stack
/// then return its offset relative to the zero position on the stack.
fn get_offset_if_simple_stack_param(
param: &AbstractLocation,
stack_register: &Variable,
) -> Option<i64> {
if let AbstractLocation::Pointer(var, mem_location) = param {
if var == stack_register {
if let AbstractMemoryLocation::Location { offset, .. } = mem_location {
return Some(*offset);
}
}
}
None
}
/// Generate an abstract location of a (non-nested) stack parameter.
fn generate_simple_stack_param(
offset: i64,
size: ByteSize,
stack_register: &Variable,
) -> AbstractLocation {
AbstractLocation::Pointer(
stack_register.clone(),
AbstractMemoryLocation::Location { offset, size },
)
}
#[cfg(test)]
mod tests;