1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! A fixpoint algorithm computing parameters of functions and their access patterns.
//!
//! The fixpoint algorithm tracks the values of registers and the stack,
//! although only stack accesses with known, constant offset are processed.
//! Accesses to potential function parameters are collected together with the type of the access
//! (is the value read, dereferenced for read access or dereferenced for write access).
//! Accesses to constant addresses that may correspond to global variables are also tracked.
//!
//! For values that are not directly tracked,
//! the algorithm tracks the abstract location that describes how the pointer to that value was computed.
//! This enables tracking of nested parameter objects
//! without actually tracking the memory objects where these objects are located.
//!
//! Known limitations of the analysis:
//! * The analysis is an overapproximation in the sense that it may generate more input parameters
//!   than actually exist in some cases.
//! * Only registers that are potential parameter registers in the standard calling convention
//!   of the CPU architecture are considered as potential parameter registers.
//!   For functions that use other registers
//!   than those in the standard calling convention for parameter passing
//!   the results of this analysis will be wrong.
//! * Parameters that are used as input values for variadic functions may be missed.
//!   Some variadic functions are stubbed, i.e. parameter recognition should work for these.
//!   But not all variadic functions are stubbed.
//! * For floating point parameter registers the base register is detected as a parameter,
//!   although only a smaller sub-register is the actual parameter in many cases.
//!   Also, if a function uses sub-registers of floating point registers as local variables,
//!   the registers may be incorrectly flagged as input parameters.
//! * Tracking of nested parameters via their abstract locations is an unsound, heuristic approach,
//!   as the analysis does not keep track of when such nested pointers might get overwritten.
//!   Nevertheless, it should result in an overapproximation of parameters and their access patterns in most cases.
//! * The nesting depth for tracked nested parameters is limited
//!   to avoid generating infinitely many parameters for recursive types like linked lists.
//! * For arrays no parameters should be created for the array elements.
//!   However, if only a particular element in an array is accessed without iteration over the array,
//!   then a parameter might be generated for that element.

use crate::abstract_domain::AbstractDomain;
use crate::abstract_domain::AbstractLocation;
use crate::abstract_domain::AbstractMemoryLocation;
use crate::analysis::fixpoint::Computation;
use crate::analysis::forward_interprocedural_fixpoint::create_computation;
use crate::analysis::forward_interprocedural_fixpoint::GeneralizedContext;
use crate::analysis::graph::*;
use crate::analysis::interprocedural_fixpoint_generic::NodeValue;
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::log::LogMessage;
use std::collections::BTreeMap;

mod context;
use context::*;
mod state;
use state::State;
mod access_pattern;
pub use access_pattern::AccessPattern;
mod global_var_propagation;
use global_var_propagation::propagate_globals;
pub mod stubs;

/// Generate the computation object for the fixpoint computation
/// and set the node values for all function entry nodes.
fn generate_fixpoint_computation<'a>(
    project: &'a Project,
    graph: &'a Graph,
    pointer_recursion_depth_limit: u64,
) -> Computation<GeneralizedContext<'a, Context<'a>>> {
    let context = Context::new(project, graph);
    let mut computation = create_computation(context, None);
    // Set the node values for all function entry nodes.
    for node in graph.node_indices() {
        if let Node::BlkStart(block, sub) = graph[node] {
            if let Some(entry_block) = sub.term.blocks.first() {
                if entry_block.tid == block.tid {
                    // The node of a function entry point
                    let calling_convention = project
                        .get_specific_calling_convention(&sub.term.calling_convention)
                        .expect("No standard calling convention found.");
                    let mut fn_start_state = State::new(
                        &sub.tid,
                        &project.stack_pointer_register,
                        calling_convention,
                        pointer_recursion_depth_limit,
                    );
                    if project.cpu_architecture.contains("MIPS") {
                        let _ = fn_start_state
                            .set_mips_link_register(&sub.tid, project.stack_pointer_register.size);
                    }
                    computation.set_node_value(node, NodeValue::Value(fn_start_state))
                }
            }
        }
    }
    computation
}

/// Extract the function signatures from the computed fixpoint.
///
/// This function needs to merge the signatures at all nodes corresponding to a function
/// to ensure that parameter accesses on non-returning execution paths of a function
/// are also recognized in the function signature.
fn extract_fn_signatures_from_fixpoint<'a>(
    project: &'a Project,
    graph: &'a Graph,
    fixpoint: Computation<GeneralizedContext<'a, Context<'a>>>,
) -> BTreeMap<Tid, FunctionSignature> {
    let mut fn_sig_map: BTreeMap<Tid, FunctionSignature> = project
        .program
        .term
        .subs
        .keys()
        .map(|tid| (tid.clone(), FunctionSignature::new()))
        .collect();
    for node in graph.node_indices() {
        match fixpoint.get_node_value(node) {
            None => (),
            Some(NodeValue::Value(state)) => {
                let fn_sig = fn_sig_map
                    .get_mut(state.get_current_function_tid())
                    .unwrap();
                fn_sig.merge_with_fn_sig_of_state(state);
            }
            Some(NodeValue::CallFlowCombinator {
                call_stub,
                interprocedural_flow,
            }) => {
                if let Some(state) = call_stub {
                    let fn_sig = fn_sig_map
                        .get_mut(state.get_current_function_tid())
                        .unwrap();
                    fn_sig.merge_with_fn_sig_of_state(state);
                }
                if let Some(state) = interprocedural_flow {
                    let fn_sig = fn_sig_map
                        .get_mut(state.get_current_function_tid())
                        .unwrap();
                    fn_sig.merge_with_fn_sig_of_state(state);
                }
            }
        }
    }
    fn_sig_map
}

/// Compute the function signatures for all functions in the project.
///
/// Returns a map from the function TIDs to their signatures,
/// and a list of log and debug messages recorded during the computation of the signatures.
///
/// For more information on the used algorithm see the module-level documentation.
pub fn compute_function_signatures<'a>(
    project: &'a Project,
    graph: &'a Graph,
) -> (BTreeMap<Tid, FunctionSignature>, Vec<LogMessage>) {
    let max_pointer_recursion_depth_limit: u64 = 2;
    // We gradually increase the recursion depth limit used in the fixpoint computation.
    // The idea is that for array accesses the offset has time to converge to `Top` before IDs for nested objects are created.
    // Otherwise the algorithm would generate an object for the first element of an array
    // before it can check that it is an array access that we want to ignore.
    let mut computation = generate_fixpoint_computation(project, graph, 0);
    computation.compute_with_max_steps(100);
    for pointer_recursion_limit in 1..=max_pointer_recursion_depth_limit {
        for node_value in computation.node_values_mut() {
            match node_value {
                NodeValue::Value(state) => {
                    state.set_pointer_recursion_depth_limit(pointer_recursion_limit)
                }
                NodeValue::CallFlowCombinator {
                    call_stub,
                    interprocedural_flow,
                } => {
                    for state in call_stub.iter_mut() {
                        state.set_pointer_recursion_depth_limit(pointer_recursion_limit);
                    }
                    for state in interprocedural_flow.iter_mut() {
                        state.set_pointer_recursion_depth_limit(pointer_recursion_limit);
                    }
                }
            }
        }
        computation.compute_with_max_steps(100);
    }

    let mut fn_sig_map = extract_fn_signatures_from_fixpoint(project, graph, computation);
    // Sanitize the parameters
    let mut logs = Vec::new();
    for (fn_tid, fn_sig) in fn_sig_map.iter_mut() {
        let info_log = fn_sig.sanitize(project);
        for log in info_log {
            logs.push(
                LogMessage::new_info(log)
                    .location(fn_tid.clone())
                    .source("Function Signature Analysis"),
            )
        }
    }
    // Propagate globals in bottom-up direction in the call graph
    propagate_globals(project, &mut fn_sig_map, &mut logs);

    (fn_sig_map, logs)
}

/// The signature of a function.
/// Currently only contains information on the parameters of a function and their access patterns.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct FunctionSignature {
    /// The parameters of the function together with their access patterns.
    pub parameters: BTreeMap<AbstractLocation, AccessPattern>,
    /// Values in writeable global memory accessed by the function.
    pub global_parameters: BTreeMap<AbstractLocation, AccessPattern>,
}

impl FunctionSignature {
    /// Generate an empty function signature.
    pub fn new() -> Self {
        Self {
            parameters: BTreeMap::new(),
            global_parameters: BTreeMap::new(),
        }
    }

    /// The returned number is the maximum of stack offset plus parameter size
    /// taken over all stack parameters in the function signature.
    pub fn get_stack_params_total_size(&self, stack_register: &Variable) -> i64 {
        let mut stack_params_total_size: i64 = 0;
        for param in self.parameters.keys() {
            if let AbstractLocation::Pointer(var, mem_location) = param {
                if var == stack_register {
                    match mem_location {
                        AbstractMemoryLocation::Location { offset, size } => {
                            stack_params_total_size = std::cmp::max(
                                stack_params_total_size,
                                offset + (u64::from(*size) as i64),
                            );
                        }
                        AbstractMemoryLocation::Pointer { offset, target: _ } => {
                            stack_params_total_size = std::cmp::max(
                                stack_params_total_size,
                                offset + (u64::from(stack_register.size) as i64),
                            );
                        }
                    }
                }
            }
        }
        stack_params_total_size
    }

    /// Merge the parameter list and the global parameter list of `self` with the given lists.
    fn merge_parameter_lists(
        &mut self,
        params: &[(&AbstractLocation, AccessPattern)],
        global_params: &[(&AbstractLocation, AccessPattern)],
    ) {
        for (arg, sig_new) in params {
            if let Some(sig_self) = self.parameters.get_mut(arg) {
                *sig_self = sig_self.merge(sig_new);
            } else {
                self.parameters.insert((*arg).clone(), *sig_new);
            }
        }
        for (address, sig_new) in global_params {
            if let Some(sig_self) = self.global_parameters.get_mut(address) {
                *sig_self = sig_self.merge(sig_new);
            } else {
                self.global_parameters.insert((*address).clone(), *sig_new);
            }
        }
    }

    /// Merge the function signature with the signature extracted from the given state.
    fn merge_with_fn_sig_of_state(&mut self, state: &State) {
        let params = state.get_params_of_current_function();
        let global_params = state.get_global_mem_params_of_current_function();
        self.merge_parameter_lists(&params, &global_params);
    }

    /// Sanitize the function signature:
    /// * Remove the return address from the list of stack parameters for x86-based architectures.
    /// * Check for unaligned stack parameters or stack parameters that are not pointer-sized
    ///   and return an info message if one is found.
    ///   This may indicate an error in the analysis
    ///   as no proper sanitation pass is implemented for such cases yet.
    /// * Merge intersecting stack parameters
    fn sanitize(&mut self, project: &Project) -> Vec<String> {
        match project.cpu_architecture.as_str() {
            "x86" | "x86_32" | "x86_64" => {
                let return_addr_location = AbstractLocation::from_stack_position(
                    &project.stack_pointer_register,
                    0,
                    project.get_pointer_bytesize(),
                );
                self.parameters.remove(&return_addr_location);
            }
            _ => (),
        }
        // FIXME: We check for intersecting stack parameter register, but not for intersecting nested parameters.
        // We should add a check for these to generate log messages (but probably without trying to merge such parameters)
        self.merge_intersecting_stack_parameters(&project.stack_pointer_register);
        self.check_for_unaligned_stack_params(&project.stack_pointer_register)
    }

    /// Return a log message for every unaligned stack parameter
    /// or a stack parameter of different size than the generic pointer size is found.
    fn check_for_unaligned_stack_params(&self, stack_register: &Variable) -> Vec<String> {
        let mut log_messages: Vec<String> = vec![];
        for param in self.parameters.keys() {
            if let Some(offset) = get_offset_if_simple_stack_param(param, stack_register) {
                if param.bytesize() != stack_register.size {
                    log_messages.push("Unexpected stack parameter size".into());
                }
                if offset % u64::from(stack_register.size) as i64 != 0 {
                    log_messages.push("Unexpected stack parameter alignment".into());
                }
            }
        }
        log_messages
    }

    /// Merges intersecting stack parameters by joining them into one stack parameter.
    ///
    /// Only non-nested stack parameters are joined by this function.
    fn merge_intersecting_stack_parameters(&mut self, stack_register: &Variable) {
        let stack_params: BTreeMap<(i64, ByteSize), (AbstractLocation, AccessPattern)> = self
            .parameters
            .iter()
            .filter_map(|(location, access_pattern)| {
                get_offset_if_simple_stack_param(location, stack_register).map(|offset| {
                    (
                        (offset, location.bytesize()),
                        (location.clone(), *access_pattern),
                    )
                })
            })
            .collect();

        let mut current_param: Option<(i64, i64, AccessPattern)> = None;
        for ((offset, _), (param, access_pattern)) in stack_params.into_iter() {
            self.parameters.remove(&param);
            if let Some((cur_offset, cur_size, cur_access_pattern)) = current_param {
                if offset < cur_offset + cur_size {
                    let merged_size = std::cmp::max(
                        cur_size,
                        offset - cur_offset + u64::from(param.bytesize()) as i64,
                    );
                    let merged_access_pattern = cur_access_pattern.merge(&access_pattern);
                    current_param = Some((cur_offset, merged_size, merged_access_pattern));
                } else {
                    self.parameters.insert(
                        generate_simple_stack_param(
                            cur_offset,
                            ByteSize::new(cur_size as u64),
                            stack_register,
                        ),
                        cur_access_pattern,
                    );
                    current_param =
                        Some((offset, u64::from(param.bytesize()) as i64, access_pattern));
                }
            } else {
                current_param = Some((offset, u64::from(param.bytesize()) as i64, access_pattern));
            }
        }
        if let Some((cur_offset, cur_size, cur_access_pattern)) = current_param {
            self.parameters.insert(
                generate_simple_stack_param(
                    cur_offset,
                    ByteSize::new(cur_size as u64),
                    stack_register,
                ),
                cur_access_pattern,
            );
        }
    }
}

impl Default for FunctionSignature {
    fn default() -> Self {
        Self::new()
    }
}

impl FunctionSignature {
    /// Generate a compact JSON-representation of the function signature for pretty printing.
    #[allow(dead_code)]
    pub fn to_json_compact(&self) -> serde_json::Value {
        let mut json_map = serde_json::Map::new();
        let mut param_map = serde_json::Map::new();
        for (param, pattern) in self.parameters.iter() {
            param_map.insert(
                format!("{param}"),
                serde_json::Value::String(format!("{pattern}")),
            );
        }
        json_map.insert(
            "Parameters".to_string(),
            serde_json::Value::Object(param_map),
        );
        let mut global_param_map = serde_json::Map::new();
        for (param, pattern) in self.global_parameters.iter() {
            global_param_map.insert(
                format!("{param}"),
                serde_json::Value::String(format!("{pattern}")),
            );
        }
        json_map.insert(
            "Globals".to_string(),
            serde_json::Value::Object(global_param_map),
        );
        serde_json::Value::Object(json_map)
    }
}

/// If the abstract location is a location on the stack
/// then return its offset relative to the zero position on the stack.
fn get_offset_if_simple_stack_param(
    param: &AbstractLocation,
    stack_register: &Variable,
) -> Option<i64> {
    if let AbstractLocation::Pointer(var, mem_location) = param {
        if var == stack_register {
            if let AbstractMemoryLocation::Location { offset, .. } = mem_location {
                return Some(*offset);
            }
        }
    }
    None
}

/// Generate an abstract location of a (non-nested) stack parameter.
fn generate_simple_stack_param(
    offset: i64,
    size: ByteSize,
    stack_register: &Variable,
) -> AbstractLocation {
    AbstractLocation::Pointer(
        stack_register.clone(),
        AbstractMemoryLocation::Location { offset, size },
    )
}

#[cfg(test)]
mod tests;