1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
//! Creating and computing generic fixpoint computations.
//!
//! For general information on dataflow analysis using fixpoint algorithms see [Wikipedia](https://en.wikipedia.org/wiki/Data-flow_analysis).
//!
//! # General implementation notes
//!
//! A fixpoint problem is defined as a graph where:
//! - Each node `n` gets assigned a value `val(n)` where the set of all values forms a partially ordered set.
//! - Each edge `e` defines a rule `e:value -> value` how to compute the value at the end node given the value at the start node of the edge.
//!
//! A fixpoint is reached if an assignment of values to all nodes of the graph is found
//! so that for all edges `e(val(start_node)) <= val(end_node)` holds.
//! Usually one wants to find the smallest fixpoint,
//! i.e. a fixpoint such that for each node `n` the value `val(n)` is as small as possible (with respect to the partial order)
//! but also not less than a given starting value.
//!
//! As in the `graph` module, nodes are assumed to represent points in time,
//! whereas edges represent state transitions or (artificial) information flow channels.
//! In particular, only edges have transition functions and not nodes.
//!
//! In the current implementation edge transition functions are also allowed to return `None`
//! to indicate that no information flows through the edge.
//! In such a case the value at the target node of the edge will not get updated.
//! For example, an analysis can use this to indicate edges that are never taken
//! and thus prevent dead code to affect the analysis.
//!
//! # How to compute the solution to a fixpoint problem
//!
//! To create a fixpoint computation one needs an object implementing the `Context` trait.
//! This object contains all information necessary to compute fixpoints,
//! like the graph or how to compute transition functions,
//! but not the actual starting values of a fixpoint computation.
//! With it, create a `Computation` object and then modify the node values through the object
//! to match the intended starting conditions of the fixpoint computation.
//! The `Computation` object also contains methods to actually run the fixpoint computation after the starting values are set
//! and methods to retrieve the results of the computation.
use fnv::FnvHashMap;
use petgraph::graph::{DiGraph, EdgeIndex, NodeIndex};
use petgraph::visit::EdgeRef;
use std::collections::{BTreeMap, BTreeSet};
/// The context of a fixpoint computation.
///
/// All trait methods have access to the FixpointProblem structure, so that context informations are accessible through it.
pub trait Context {
/// the type of edge labels of the underlying graph
type EdgeLabel: Clone;
/// the type of node labels of the underlying graph
type NodeLabel;
/// The type of the value that gets assigned to each node.
/// The values should form a partially ordered set.
type NodeValue: PartialEq + Eq + Clone;
/// Get the graph on which the fixpoint computation operates.
fn get_graph(&self) -> &DiGraph<Self::NodeLabel, Self::EdgeLabel>;
/// This function describes how to merge two values
fn merge(&self, val1: &Self::NodeValue, val2: &Self::NodeValue) -> Self::NodeValue;
/// This function describes how the value at the end node of an edge is computed from the value at the start node of the edge.
/// The function can return None to indicate that no end value gets generated through this edge.
/// E.g. In a control flow graph, if the edge cannot be taken for the given start value, this function should return None.
fn update_edge(&self, value: &Self::NodeValue, edge: EdgeIndex) -> Option<Self::NodeValue>;
}
/// The computation struct contains an intermediate result of a fixpoint computation
/// and provides methods for continuing the fixpoint computation
/// or extracting the (intermediate or final) results.
///
/// # Usage
///
/// ```ignore
/// let mut computation = Computation::new(context, optional_default_node_value);
///
/// // set starting node values with computation.set_node_value(..)
/// // ...
///
/// computation.compute();
///
/// // get the resulting node values
/// if let Some(node_value) = computation.get_node_value(node_index) {
/// // ...
/// };
/// ```
pub struct Computation<T: Context> {
/// The context object needed for the fixpoint computation
fp_context: T,
/// maps a node index to its priority (higher priority nodes get stabilized first)
node_priority_list: Vec<usize>,
/// maps a priority to the corresponding node index
priority_to_node_list: Vec<NodeIndex>,
/// The worklist contains the priority numbers (not the node indices!) of nodes marked as not yet stabilized.
worklist: BTreeSet<usize>,
/// The internal map containing all known node values.
node_values: FnvHashMap<NodeIndex, T::NodeValue>,
}
impl<T: Context> Computation<T> {
/// Create a new fixpoint computation from a fixpoint problem, the corresponding graph
/// and a default value for all nodes if one should exists.
pub fn new(fp_context: T, default_value: Option<T::NodeValue>) -> Self {
let graph = fp_context.get_graph();
// order the nodes in weak topological order
let priority_sorted_nodes: Vec<NodeIndex> = petgraph::algo::kosaraju_scc(&graph)
.into_iter()
.flatten()
.collect();
Self::from_node_priority_list(fp_context, default_value, priority_sorted_nodes)
}
/// Create a new fixpoint computation from a fixpoint problem, an optional default value
/// and the list of nodes of the graph ordered by the priority for the worklist algorithm.
/// The worklist algorithm will try to stabilize the nodes with a higher index
/// in the `priority_sorted_nodes` array before those with a lower index.
pub fn from_node_priority_list(
fp_context: T,
default_value: Option<T::NodeValue>,
priority_sorted_nodes: Vec<NodeIndex>,
) -> Self {
let mut node_to_index = BTreeMap::new();
for (i, node_index) in priority_sorted_nodes.iter().enumerate() {
node_to_index.insert(node_index, i);
}
let node_priority_list: Vec<usize> = node_to_index.values().copied().collect();
let mut worklist = BTreeSet::new();
// If a default value exists, all nodes are added to the worklist. If not, the worklist is empty
let mut node_values: FnvHashMap<NodeIndex, T::NodeValue> = FnvHashMap::default();
if let Some(default) = default_value {
for i in 0..priority_sorted_nodes.len() {
worklist.insert(i);
node_values.insert(NodeIndex::new(i), default.clone());
}
}
Computation {
fp_context,
node_priority_list,
priority_to_node_list: priority_sorted_nodes,
worklist,
node_values,
}
}
/// Get the value of a node.
pub fn get_node_value(&self, node: NodeIndex) -> Option<&T::NodeValue> {
self.node_values.get(&node)
}
/// Set the value of a node and mark the node as not yet stabilized.
pub fn set_node_value(&mut self, node: NodeIndex, value: T::NodeValue) {
self.node_values.insert(node, value);
self.worklist.insert(self.node_priority_list[node.index()]);
}
/// Merge the value at a node with some new value.
fn merge_node_value(&mut self, node: NodeIndex, value: T::NodeValue) {
if let Some(old_value) = self.node_values.get(&node) {
let merged_value = self.fp_context.merge(&value, old_value);
if merged_value != *old_value {
self.set_node_value(node, merged_value);
}
} else {
self.set_node_value(node, value);
}
}
/// Compute and update the value at the end node of an edge.
fn update_edge(&mut self, edge: EdgeIndex) {
let (start_node, end_node) = self
.fp_context
.get_graph()
.edge_endpoints(edge)
.expect("Edge not found");
if let Some(start_val) = self.node_values.get(&start_node) {
if let Some(new_end_val) = self.fp_context.update_edge(start_val, edge) {
self.merge_node_value(end_node, new_end_val);
}
}
}
/// Update all outgoing edges of a node.
fn update_node(&mut self, node: NodeIndex) {
let edges: Vec<EdgeIndex> = self
.fp_context
.get_graph()
.edges(node)
.map(|edge_ref| edge_ref.id())
.collect();
for edge in edges {
self.update_edge(edge);
}
}
/// Remove the highest priority node from the internal worklist and return it.
fn take_next_node_from_worklist(&mut self) -> Option<NodeIndex> {
if let Some(priority) = self.worklist.iter().next_back().cloned() {
let priority = self.worklist.take(&priority).unwrap();
Some(self.priority_to_node_list[priority])
} else {
None
}
}
/// Compute the fixpoint of the fixpoint problem.
/// Each node will be visited at most max_steps times.
/// If a node does not stabilize after max_steps visits, the end result will not be a fixpoint but only an intermediate result of a fixpoint computation.
pub fn compute_with_max_steps(&mut self, max_steps: u64) {
let mut steps = vec![0; self.fp_context.get_graph().node_count()];
let mut non_stabilized_nodes = BTreeSet::new();
while let Some(priority) = self.worklist.iter().next_back().cloned() {
let priority = self.worklist.take(&priority).unwrap();
let node = self.priority_to_node_list[priority];
if steps[node.index()] < max_steps {
steps[node.index()] += 1;
self.update_node(node);
} else {
non_stabilized_nodes.insert(priority);
}
}
// After the algorithm finished, the new worklist is the list of non-stabilized nodes
self.worklist = non_stabilized_nodes;
}
/// Compute the fixpoint of the fixpoint problem.
/// If the fixpoint algorithm does not converge to a fixpoint, this function will not terminate.
pub fn compute(&mut self) {
while let Some(node) = self.take_next_node_from_worklist() {
self.update_node(node);
}
}
/// Get a reference to the internal map where one can look up the current values of all nodes
pub fn node_values(&self) -> &FnvHashMap<NodeIndex, T::NodeValue> {
&self.node_values
}
/// Get a mutable iterator over all node values.
/// Also add all nodes that have values to the worklist, because one can change all their values through the iterator.
pub fn node_values_mut(&mut self) -> impl Iterator<Item = &mut T::NodeValue> {
for node in self.node_values.keys() {
let priority = self.node_priority_list[node.index()];
self.worklist.insert(priority);
}
self.node_values.values_mut()
}
/// Get a reference to the underlying graph
pub fn get_graph(&self) -> &DiGraph<T::NodeLabel, T::EdgeLabel> {
self.fp_context.get_graph()
}
/// Get a reference to the underlying context object
pub fn get_context(&self) -> &T {
&self.fp_context
}
/// Returns `True` if the computation has stabilized, i.e. the internal worklist is empty.
pub fn has_stabilized(&self) -> bool {
self.worklist.is_empty()
}
/// Return a list of all nodes which are marked as not-stabilized
pub fn get_worklist(&self) -> Vec<NodeIndex> {
self.worklist
.iter()
.map(|priority| self.priority_to_node_list[*priority])
.collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
struct FPContext {
graph: DiGraph<(), u64>,
}
impl Context for FPContext {
type EdgeLabel = u64;
type NodeLabel = ();
type NodeValue = u64;
fn get_graph(&self) -> &DiGraph<(), u64> {
&self.graph
}
fn merge(&self, val1: &Self::NodeValue, val2: &Self::NodeValue) -> Self::NodeValue {
std::cmp::min(*val1, *val2)
}
fn update_edge(&self, value: &Self::NodeValue, edge: EdgeIndex) -> Option<Self::NodeValue> {
Some(value + self.graph.edge_weight(edge).unwrap())
}
}
#[test]
fn fixpoint() {
let mut graph: DiGraph<(), u64> = DiGraph::new();
for _i in 0..101 {
graph.add_node(());
}
for i in 0..100 {
graph.add_edge(NodeIndex::new(i), NodeIndex::new(i + 1), i as u64 % 10 + 1);
}
for i in 0..10 {
graph.add_edge(NodeIndex::new(i * 10), NodeIndex::new(i * 10 + 5), 0);
}
graph.add_edge(NodeIndex::new(100), NodeIndex::new(0), 0);
let mut solution = Computation::new(FPContext { graph }, None);
solution.set_node_value(NodeIndex::new(0), 0);
solution.compute_with_max_steps(20);
assert_eq!(30, *solution.get_node_value(NodeIndex::new(9)).unwrap());
assert_eq!(0, *solution.get_node_value(NodeIndex::new(5)).unwrap());
}
#[test]
fn fixpoint_with_default_value() {
let mut graph: DiGraph<(), u64> = DiGraph::new();
for _i in 0..101 {
graph.add_node(());
}
for i in 0..100 {
graph.add_edge(NodeIndex::new(i), NodeIndex::new(i + 1), i as u64 % 10 + 1);
}
for i in 0..10 {
graph.add_edge(NodeIndex::new(i * 10), NodeIndex::new(i * 10 + 5), 0);
}
let mut solution = Computation::new(FPContext { graph }, Some(100));
solution.set_node_value(NodeIndex::new(10), 0);
solution.compute_with_max_steps(20);
assert_eq!(100, *solution.get_node_value(NodeIndex::new(0)).unwrap());
assert_eq!(3, *solution.get_node_value(NodeIndex::new(12)).unwrap());
}
#[test]
fn worklist_node_order() {
let mut graph: DiGraph<(), u64> = DiGraph::new();
for _i in 0..21 {
graph.add_node(());
}
for i in 1..19 {
graph.add_edge(NodeIndex::new(0), NodeIndex::new(i), 1);
}
for i in 1..19 {
graph.add_edge(NodeIndex::new(i), NodeIndex::new(19), 1);
}
graph.add_edge(NodeIndex::new(19), NodeIndex::new(20), 1);
let mut computation = Computation::new(
FPContext {
graph: graph.clone(),
},
Some(1),
);
assert!(computation.node_priority_list[0] > computation.node_priority_list[1]);
assert!(computation.node_priority_list[1] > computation.node_priority_list[19]);
assert!(computation.node_priority_list[19] > computation.node_priority_list[20]);
// assert that the nodes have the correct priority ordering
assert_eq!(
computation.take_next_node_from_worklist(),
Some(NodeIndex::new(0))
);
for _i in 1..19 {
assert!(computation.take_next_node_from_worklist().unwrap().index() < 19);
}
assert_eq!(
computation.take_next_node_from_worklist(),
Some(NodeIndex::new(19))
);
assert_eq!(
computation.take_next_node_from_worklist(),
Some(NodeIndex::new(20))
);
}
}