1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
use std::collections::BTreeMap;
use std::marker::PhantomData;
use std::ops::Deref;
use std::ops::DerefMut;
use std::sync::Arc;
use super::*;
/// A `DomainMap<Key, Value, MapMergeStrategy>` is a wrapper type around a `BTreeMap<Key, Value>
/// where the `Value` type is an abstract domain and the map itself is also an abstract domain.
///
/// For example, a map from registers to an abstract domain representing the contained values
/// can be represented by a `DomainMap`.
///
/// A `DomainMap` has two main advantages over a regular `BTreeMap`:
/// * The map itself is wrapped into an `Arc<..>` to enable cheap cloning of `DomainMaps`.
/// * The `DomainMap` automatically implements the [`AbstractDomain`] trait
/// according to the provided [`MapMergeStrategy`] used for merging two maps.
///
/// Since a `DomainMap` implements the `Deref` and `DerefMut` traits with target the inner `BTreeMap`,
/// it can be used just like a `BTreeMap`.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V>,
{
inner: Arc<BTreeMap<K, V>>,
phantom: PhantomData<S>,
}
impl<K, V, S> Deref for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V>,
{
type Target = BTreeMap<K, V>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<K, V, S> DerefMut for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V>,
{
fn deref_mut(&mut self) -> &mut BTreeMap<K, V> {
Arc::make_mut(&mut self.inner)
}
}
impl<K, V, S> From<BTreeMap<K, V>> for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V>,
{
/// Generate a new `DomainMap` from the `BTreeMap` that it should contain.
fn from(map: BTreeMap<K, V>) -> Self {
DomainMap {
inner: Arc::new(map),
phantom: PhantomData,
}
}
}
impl<K, V, S> FromIterator<(K, V)> for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V>,
{
/// Generate a new `DomainMap` from an iterator over the key-value pairs that it should contain.
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (K, V)>,
{
DomainMap {
inner: Arc::new(iter.into_iter().collect()),
phantom: PhantomData,
}
}
}
impl<K, V, S> AbstractDomain for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V> + Clone + Eq,
{
/// Merge two `DomainMaps` according to the [`MapMergeStrategy`] of the `DomainMap`.
fn merge(&self, other: &Self) -> Self {
if self == other {
self.clone()
} else {
let mut new_map = self.clone();
new_map.merge_with(other);
new_map
}
}
fn merge_with(&mut self, other: &Self) -> &mut Self {
if self != other {
let mut_map = Arc::make_mut(&mut self.inner);
S::merge_map_with(mut_map, &other.inner);
}
self
}
/// A `DomainMap` is considered to be a `Top` element if it is empty.
fn is_top(&self) -> bool {
self.inner.is_empty()
}
}
impl<K, V, S> Default for DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V> + Clone + Eq,
{
fn default() -> Self {
Self::new()
}
}
impl<K, V, S> DomainMap<K, V, S>
where
K: PartialOrd + Ord + Clone,
V: AbstractDomain,
S: MapMergeStrategy<K, V> + Clone + Eq,
{
/// Returns a new, empty map into the abstract domain `V`.
///
/// The semantics of an empty map depend on the use case. Oftentimes
/// non-existent keys will be mapped to the Top, Bottom, or some default
/// element in the target domain.
pub fn new() -> Self {
BTreeMap::new().into()
}
}
/// A `MapMergeStrategy` determines how the merge-method for a [`DomainMap`] works.
///
/// The possible strategies are:
/// * [`UnionMergeStrategy`]
/// * [`IntersectMergeStrategy`]
/// * [`MergeTopStrategy`]
pub trait MapMergeStrategy<K: Ord + Clone, V: AbstractDomain> {
/// This function determines how two [`DomainMap`] instances are merged as
/// abstract domains.
///
/// # Default
///
/// Clones the left side and uses [`MapMergeStrategy::merge_map_with`] to
/// combine it with the right side.
fn merge_map(map_left: &BTreeMap<K, V>, map_right: &BTreeMap<K, V>) -> BTreeMap<K, V> {
let mut map = map_left.clone();
Self::merge_map_with(&mut map, map_right);
map
}
/// Merges `map` with `other` by modifying `map` in-place.
fn merge_map_with(map: &mut BTreeMap<K, V>, other: &BTreeMap<K, V>);
}
/// A [`MapMergeStrategy`] where key-value pairs whose key is only present in one input map
/// are added to the merged map.
/// `Top` values and their corresponding keys are also preserved in the merged map.
///
/// The strategy is meant to be used for maps
/// where the values associated to keys not present in the map
/// have an implicit bottom value of the value abstract domain associated to them.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct UnionMergeStrategy {
_private: (), // Marker to prevent instantiation
}
impl<K: Ord + Clone, V: AbstractDomain> MapMergeStrategy<K, V> for UnionMergeStrategy {
fn merge_map_with(map: &mut BTreeMap<K, V>, other: &BTreeMap<K, V>) {
for (key, value_other) in other.iter() {
map.entry(key.clone())
.and_modify(|value| {
value.merge_with(value_other);
})
.or_insert_with(|| value_other.clone());
}
}
}
/// A [`MapMergeStrategy`] where the merge function only keeps keys that are
/// present in both input maps.
///
/// Furthermore, keys whose values are merged to the `Top` value are also
/// removed from the merged map.
///
/// The strategy is meant to be used for maps, where keys not present in the map
/// have an implicit `Top` value associated to them. The strategy implicitly
/// assumes that the `Top` value of the value abstract domain is an actual
/// maximal value of the domain.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct IntersectMergeStrategy {
_private: (), // Marker to prevent instantiation
}
impl<K: Ord + Clone, V: AbstractDomain> MapMergeStrategy<K, V> for IntersectMergeStrategy {
fn merge_map_with(map: &mut BTreeMap<K, V>, other: &BTreeMap<K, V>) {
map.retain(|k, value| {
let Some(value_other) = other.get(k) else {
return false;
};
value.merge_with(value_other);
!value.is_top()
});
}
}
/// A [`MapMergeStrategy`] where for every key that only occurs in one input map of the merge function
/// the corresponding value is merged with `Top` before being added to the merged map.
/// Furthermore, keys whose values are merged to the `Top` value are removed from the merged map.
///
/// The strategy is an alternative to the [`IntersectMergeStrategy`]
/// in cases where the `Top` value of the value domain is not a maximal element of the abstract domain
/// and should instead be interpreted as a default element assigned to all keys not present in a domain map.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct MergeTopStrategy {
_private: (), // Marker to prevent instantiation
}
impl<K: Ord + Clone, V: AbstractDomain + HasTop> MapMergeStrategy<K, V> for MergeTopStrategy {
fn merge_map_with(map: &mut BTreeMap<K, V>, other: &BTreeMap<K, V>) {
map.retain(|key, value| {
if let Some(value_other) = other.get(key) {
value.merge_with(value_other);
} else {
let top = value.top();
value.merge_with(&top);
};
!value.is_top()
});
for (k, value_other) in other.iter() {
if map.get(k).is_none() {
let mut merged_value = value_other.top();
merged_value.merge_with(value_other);
if !merged_value.is_top() {
map.insert(k.clone(), merged_value);
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bitvec;
use std::collections::BTreeMap;
#[test]
fn test_merge_strategies() {
let map_left: BTreeMap<u64, DataDomain<BitvectorDomain>> = [
(0u64, bitvec!("0:8").into()),
(1u64, bitvec!("0:8").into()),
(5u64, DataDomain::new_top(ByteSize::new(8))),
]
.iter()
.cloned()
.collect();
let map_right: BTreeMap<u64, DataDomain<BitvectorDomain>> = [
(1u64, bitvec!("1:8").into()),
(2u64, bitvec!("1:8").into()),
(5u64, DataDomain::new_top(ByteSize::new(8))),
]
.iter()
.cloned()
.collect();
// Test the UnionMergeStrategy.
let domain_map_left: DomainMap<_, _, UnionMergeStrategy> = map_left.clone().into();
let domain_map_right: DomainMap<_, _, UnionMergeStrategy> = map_right.clone().into();
let merged_map = domain_map_left.merge(&domain_map_right);
assert_eq!(merged_map.get(&0), Some(&bitvec!("0:8").into()));
assert_eq!(
merged_map.get(&1),
Some(&BitvectorDomain::new_top(ByteSize::new(8)).into())
);
assert_eq!(merged_map.get(&2), Some(&bitvec!("1:8").into()));
assert_eq!(
merged_map.get(&5),
Some(&DataDomain::new_top(ByteSize::new(8)).into())
);
// Test the IntersectMergeStrategy
let domain_map_left: DomainMap<_, _, IntersectMergeStrategy> = map_left.clone().into();
let domain_map_right: DomainMap<_, _, IntersectMergeStrategy> = map_right.clone().into();
let merged_map = domain_map_left.merge(&domain_map_right);
assert_eq!(merged_map.get(&0), None);
assert_eq!(
merged_map.get(&1),
Some(&BitvectorDomain::new_top(ByteSize::new(8)).into())
);
assert_eq!(merged_map.get(&2), None);
assert_eq!(merged_map.get(&5), None);
// Test the MergeTopStrategy
let domain_map_left: DomainMap<_, _, MergeTopStrategy> = map_left.into();
let domain_map_right: DomainMap<_, _, MergeTopStrategy> = map_right.into();
let merged_map = domain_map_left.merge(&domain_map_right);
assert_eq!(
merged_map.get(&0).unwrap().get_absolute_value(),
Some(&bitvec!("0:8").into())
);
assert!(merged_map.get(&0).unwrap().contains_top());
assert_eq!(
merged_map.get(&1),
Some(&BitvectorDomain::new_top(ByteSize::new(8)).into())
);
assert_eq!(
merged_map.get(&2).unwrap().get_absolute_value(),
Some(&bitvec!("1:8").into())
);
assert!(merged_map.get(&2).unwrap().contains_top());
assert_eq!(merged_map.get(&5), None);
}
}